LING 572.01: Generative Syntax

Tully J. Thibeau
University of Montana - Missoula, tully.thibeau@umontana.edu

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation
https://scholarworks.umt.edu/syllabi/492

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Consider the notion constituent, one or more words functioning as a single unit, a notion preceding the inception of generative syntax that is representable using formal bracket notation:

```
[ [ cats ] [ chase [ [ mice ] ] ] ]
```

The outer brackets represent the sentence constituent, and each word also receives its own set of brackets (in strikethrough); however, another set of brackets (in bold) represent the notion that "chase mice" functions as a constituent independently of the individual words contained therein. This intuition can be tested for constituency by applying a grammatical operation that is known as clefting (breaking the sentence in two) whereby "chase mice" is displaced from its basic position and relocated at the left-edge position of a new derived sentence that adds several other words:

```
[ chase mice ] is what cats do
```

Conversely, the clefting transformation that changes the basic sentence into a derived one cannot operate on the words "cats chase" because no single set of brackets exhaustively contains them:

```
* [ cats chase ] is what mice undergo (* means ungrammatical)
```

While methods of syntactic analysis prior to the advent of generative syntax can conceptualize layers of constituency graphically (e.g., bracketing), no technological counterpart existed based on such formal notation could operationalize what human beings know intuitively about how sentence-formation systems work (grammaticality) why at times they do not (ungrammaticality).

This point, intuitions of what is, respectively, well-formed and ill-formed constituencies, is the lynchpin of a generative syntax, or a sentence-formation system that is sufficiently general, a machine that fabricates every grammatical sentence constituency (an infinite number) and does not fabricate ungrammatical ones (intuits of ill-formedness). The sentence-fabrication machine is an analogy (either apt or false) for a mental faculty that fundamentally characterizes humans. The first person to crack the code of infinity was a graduate student named Noam Chomsky, who was studying linguistics at MIT and devised a programming language prompting the innovation of a new automaton (i.e., computer) that modeled, to a degree, humans' capability of infinity.

Incarnations of his work attempt sufficient generality yet remain computer models, and the only language computers understand is mathematic. This course covers development of generative syntax from Chomsky's graduate-student years in the early 1950s until the mid 1980s.