9-2014

ENSC 360.01: Applied Ecology

Vicki J. Watson

University of Montana - Missoula, vicki.watson@umontana.edu

Let us know how access to this document benefits you.

Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation

https://scholarworks.umt.edu/syllabi/1370

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@msou.umt.edu.
Purpose: Understanding the principles & concepts of ecology & how they inform real life decisions about human interactions with the environment. Emphasizes conservation of watersheds & biodiversity and design of field studies.

Prerequisites: college level general biology & chemistry, statistics, ENST 201 (or similar courses)

References: EOE8 = Smith & Smith’s Elements of Ecology 8th edition (library reserve, bookstore & online in many options)
(OR ANY basic ecology text – just read appropriate sections based on topic)
AND AEEM = E. Newman’s Applied Ecology & Env. Management 2nd ed In bookstore or on library reserve
Brower et al. Field & Lab methods for General Ecology is also a useful reference for methods.
Additional readings will be emailed to you during the semester

Week Lecture Topics Overview & references (select your readings using table of contents & index)
8/26 Course goals/mechanics. What is Applied Ecology & field studies? First chapter of text: Cox manual chs 1-4
Ecological Literacy—Ecological concepts (& methods) that inform human decisions
9/9 Ecosystem concepts EOE8 Part 1 & Part 6
All life and economic activity depends on earth support systems (ecosystem services).
9/25 Resources/services come from ecosystems & depend on their health/integrity/condition.
Support systems have limited capacity to supply goods/services & to assimilate change.
Natural change contributes to diversity but makes it hard to identify human-caused change.
Support systems are connected, so our actions have unexpected, indirect effects.
Local populations/communities/ecosystems are linked in regional & global systems
(whole > sum of parts); importance of incremental, cumulative effects
Energy flow & productivity EOE8 ch 21
Material cycles (esp. water) EOE8 ch 3 (water cycle) & ch 22-23
Env. fate of chemicals AEEM ch 9 (p 263-80)

9/30 Community concepts EOE8 ch 14-19 (fig 17.12);
& in Part 7, read about the type of ecosystem/community at your study site
Niche & Habitat —every species has multiple roles (keystone, foundation, indicator, umbrella species)
10/14 Interactions/connections—competition, predation, mutualism/symbiosis, coevolution
Change (ch 19)—succession, disturbance, stability, resilience, flexibility, predictability, shifting baselines
Diversity (ch 29)—types & significance of diversity; Why and how to maintain biodiversity
10/16 Organisms & their adaptations; EOE8 ch 5-7;
10/21 Population concepts EOE8 Ch 5, 8-12, Newman Ch 10
What are populations (local & meta), subspecies, and species? EOE8 Ch 5, 8, 12 (especially p 233)
10-30 change in quantity—rate/regulation of growth, carrying capacity, ecofootprint EOE8 ch 9-11
change in quality—evolution, genetic diversity, flexibility, pop. viability analysis EOE8 ch 5 & 29 esp p 576-7 (MVP?)

11/6-12/2 Ecological Literacy for a sustainable society. See EOE8 (part 8 Human Ecology) & AEEM
Possible topics (reading will be assigned after class selects topics): Energy, Carbon and Climate N ch2, EOE8 ch 30
Achieving Sustainability EOE8 Ch 28; Population Policy, carrying capacity, ecofootprint (assigned reading)
Conservation of Biodiversity N ch10 & EOE8 Ch 29; Ecological restoration—N ch11 and SER web site
Pollution Ecology. Ecotoxicology and setting standards N ch9; Forest Management N ch7
Ecology of Food Production N ch4 (also 3.5.6); Pest management N ch 8
Env. Impact & Risk Assessment; Watersheds—Clark Fork case study
www.epa.gov/region8/superfund/mt/index.html
OR papers selected from Frontiers in Ecology or other key journals by class

12/4 last regular class day -- wrap up/evaluations
12/8 (Mon) 10 am to noon. Final class meeting. Special surprise speaker

*** 10/27 last day to drop or change grading ‘easily’; last day to drop at all is last day of classes Dec 5 ***
Grade based on percentage of 650 points earned

HOW to earn points (maximum possible points shown):

- 500 pts Take home essay exams (100 pts each)
- 50 pts Participation in class
- 100 pts Field trips & reports on same (10 pts/hr of trip & per ½ page of single spaced 10pt font)

reports due about one week after field trip. Sign up in class or at M-2 Rankin
See EVST Conservation calendar for times & meeting places.

HOW to lose points: Unexcused absence from field trip once signed up – drop letter grade.

Late work – Assignments lose half their value after 5pm day due.
Assignments lose rest of their value at 5pm a week later.

Take Home Exam Essays ARE DUE THE DAYS/TIMES INDICATED on the exam;

Field Trips schedule for ENSC 360 class Fall 2014

For trips with UM vans (*), Students in ENSC 105, 360 & 540 may register for a space in a UM van on a sign up list at Rankin Hall room M-2. Other UM students can ride in the UM van if there is space. Non-students need to provide their own transportation.

Aug 27 (Wed, walk) & 29 (Fri, bike)—Clark Fork River sampling—meet at 102 Natural Science at 2:10pm (weather permitting)
Aug 30-Sept 1 (Sat-Mon), – sampling on upper & lower river. arrange to ride with VW on any of these days (as space permits).
* Sept 13, Sat – Clark Fork Superfund tour, meet at 8am at north end of Van Buren br. (East Gate parking lot), return 6pm.
Sept 19-20 – Missoula Hazardous Waste Collection Days (volunteers needed, great experience & counts for field trip hours)
* Sept 27 Sat – Public Land Day (volunteers needed; ecological service work may count as field trip; check with Watson)
* Oct 4, Sat, Blackfoot Restoration Tour – meet at 8am at north end of Van Buren Br. (East Gate parking lot). return 6pm.

Note: Some field trips of ngos, government agencies or other departments may count as 360 field trips – get them approved & arrange your own transportation. For more info (time, location, contacts) on field trips, see -- www.umt.edu/conservationcalendar

Ecological Restoration field trips (courtesy of Cara Nelson) are also recommended. Info on these will be emailed.

Others field trips that will be organized (in Oct or Nov).

* Tour Missoula Wastewater Treatment plant, Ekocompost (composts Missoula's sewage sludge, started over 30 years ago by an EVST alum) and new land application/poplar plantation by the treatment plant (also started by EVST alums)

First Take Home Exam question (Rest of Take Home Essay Exams will be emailed to class)

Remember to Cite your sources using the Council of Science Editors style that was used in ENST 201 (ask for a guide if needed). Lectures, ecology texts, Newman text, Cox manual are good sources, but find some journal articles also if you can.

Point allocation & due dates for the remaining questions are specified on the exam questions which will be emailed to you.

Restate each part of the question just before you give your answer to it. Using the e-version of the exam saves retyping questions.

1) Scientific methods, approaches, processes used in ecological field studies (part a due Sept 9 @ 12:40pm; part b due Sept 23 by 12:40pm)

A. Identify a published primary research article on an ecological FIELD study to use as an example (or construct your own if you are brave).
State the main overall question addressed by the research project (ATTACH a copy of the published study you are using);
Briefly outline the study design – why do it? what is observed/measured, when, where, how and why do it this way?
How was data analyzed? That is, what statistical tests or other data analysis methods were used and why? 10 pts

B. Explain the following terms (ie define, give importance to scientific process) and ILLUSTRATE using your study):
The scientific cycle (10pts), induction vs deduction (10pts), description vs experimental manipulation (10), reductionist vs holistic approaches (10, include advantages/disadvantages of each), control/reference (5), replication (5), QA/QC (accuracy, precision, representativeness, comparability, completeness –20) and use of models (10, what are they & how are they used in ecological field science?).
Even if a concept does not seem directly applicable to your study, give a short definition & example. (use info in Cox manual & lectures).
2 points for each relevant, credible, correctly cited source up to 10 pts

Note – I recommend you select study sites in the US (in MT even better) –easier to find info needed for questions.
You will form into small research teams that will select a single study based on common interests. You can work together on researching the questions, but each person will produce his/her own essay answers in his/her own words. Some suggested studies will be provided.