1961

Chapters on the Fort Peck development

John Thomas Ryan

The University of Montana

Let us know how access to this document benefits you.

Follow this and additional works at: https://scholarworks.umt.edu/etd

Recommended Citation
https://scholarworks.umt.edu/etd/1774

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
CHAPTERS ON THE FORT PECK DEVELOPMENT

by

JOHN THOMAS RYAN

B. A. Montana State University, 1948

Presented in partial fulfillment of the requirements for the degree of

Master of Arts

MONTANA STATE UNIVERSITY

1961

Approved by:

E. E. Bennett
Chairman, Board of Examiners

Dean, Graduate School

AUG 6 1961

Date
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. HISTORICAL BACKGROUND OF FORT PECK</td>
<td></td>
</tr>
<tr>
<td>Old Fort Peck</td>
<td>1</td>
</tr>
<tr>
<td>Contemporary Background</td>
<td>5</td>
</tr>
<tr>
<td>Legislation and Its Reception</td>
<td>14</td>
</tr>
<tr>
<td>Protests</td>
<td>19</td>
</tr>
<tr>
<td>II. CONSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>Major Features</td>
<td>25</td>
</tr>
<tr>
<td>Employment</td>
<td>29</td>
</tr>
<tr>
<td>Wild West Dam Towns of the 1930's</td>
<td>51</td>
</tr>
<tr>
<td>III. FLOOD CONTROL AND POWER DEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>Flood Control</td>
<td>55</td>
</tr>
<tr>
<td>Power Development</td>
<td>58</td>
</tr>
<tr>
<td>IV. NAVIGATION, IRRIGATION AND RECREATION</td>
<td></td>
</tr>
<tr>
<td>Navigation</td>
<td>71</td>
</tr>
<tr>
<td>Irrigation</td>
<td>74</td>
</tr>
<tr>
<td>Recreation</td>
<td>77</td>
</tr>
<tr>
<td>V. THE DAM IN CONTEMPORARY SOCIETY</td>
<td></td>
</tr>
<tr>
<td>Big Dam Philosophy</td>
<td>80</td>
</tr>
<tr>
<td>Inter-Agency Committee</td>
<td>86</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>89</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>95</td>
</tr>
</tbody>
</table>
LIST OF MAPS

<table>
<thead>
<tr>
<th>MAP</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Map of Missouri River Basin in Montana.</td>
<td>6</td>
</tr>
<tr>
<td>II. Map showing entire Missouri River Basin.</td>
<td>7</td>
</tr>
</tbody>
</table>
LIST OF PHOTOGRAPHS

<table>
<thead>
<tr>
<th>PHOTOGRAPH</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Site of dam before start of construction.</td>
<td>31</td>
</tr>
<tr>
<td>II. Sheet piling being driven</td>
<td>33</td>
</tr>
<tr>
<td>III. Dredge and pipeline</td>
<td>35</td>
</tr>
<tr>
<td>IV. Excavation of control shaft</td>
<td>37</td>
</tr>
<tr>
<td>V. Upstream face of dam</td>
<td>39</td>
</tr>
<tr>
<td>VI. Interior of tunnel under construction</td>
<td>41</td>
</tr>
<tr>
<td>VII. Power plant</td>
<td>43</td>
</tr>
<tr>
<td>VIII. Front page of Great Falls Tribune</td>
<td>46</td>
</tr>
</tbody>
</table>

iii
ACKNOWLEDGMENT

The writer makes grateful acknowledgment to the many persons and institutions for contributing so generously and unsparingly of advice and material in the preparation of this thesis. Special thanks are due to former Professor of History, Paul C. Phillips, and my faculty advisor Professor Earl Everett Bennett. Professor Melvin C. Wren, chairman of the History Department, Professor Thomas Payne, chairman of the Political Science Department, and Emma Bravo Lommason have been very generous in offering encouragement and advice. William D. James was very cooperative by giving generously the resources of the Tribune library.
CHAPTER I
HISTORICAL BACKGROUND OF FORT PECK

Old Fort Peck was a center of activity for steam boats, fur traders and later the second largest Indian Reservation in Montana. It had received importance when the Federal government entered the fields of river navigation and flood control. Sectionalism, railroads and utilities entered the debates on river development.

Old Fort Peck

Consistent with the policies he had established, (seldom if ever did he leave an old friend without a job), President Grant sent Colonel C. K. Peck to the Fort Peck area. In 1867, through the influence of Secretary of Secretary of War Belknap, Peck and E. H. Durfee secured valuable contracts for hauling supplies, including flour, sugar, cloth, caps, powder and rifles, from the War Department. The firm of Peck and Durfee owned as many as seventeen steam boats which were being used on the Missouri river to fulfill these contracts. Peck and Durfee hired a man named Farwell to build a post close to where the town of Nashua now stands, very near the confluence of the Missouri and Milk rivers. This was a shrewd maneuver as Farwell had married an Indian woman and was on very good terms with his wife's people. Trade of guns and food flourished.¹

It is probably safe to assume that the disregard for the white

¹Glasgow Courier, Glasgow, Montana, January 1, 1915.
man's border between Canada and the United States brought the Indian into contact with British brandy, Puerto Rican rum and American corn whiskey. The Hudson's Bay Company which had been in this part of the plains country recorded, "The only way of increasing the fur trade is to have an inland settlement to supply the natives with necessaries: ammunition, tobacco and brandy".

Rather ironical, at this period while the Peck and Durfee Company carried on a flourishing trade, farther south in an area which also was to become Montana, the situation was not at all similar. General Miles, Terry and Gibbon seemed to be bent on the destruction of the Indians. Indians as far south as Wyoming were found wearing flour sack clothing. The Indians had traded their pelts to Peck and Durfee for flour. Very little alteration was required to make these flour sacks into wearing apparel. The red spots on the cotton sacks appealed to the Indians.

Low water plagued the river traffic and in some months steam boats could not make the trip to the junction of the Milk and Missouri rivers. In 1879 Colonel Peck placed a petition before Congress asking that something be done to make the Missouri navigable the year around. Colonel Peck is credited with being the first man to ask Washington to build a dam across the Missouri.

4 Ibid.
The early history of old Fort Peck is divided into two periods of usefulness. First it was used as a trading post from 1867 to 1871. From 1873 until 1879 the fort was used as an Indian agency and moved to the confluence of the Poplar and Missouri rivers, which is farther east than the original site. Beginning in 1871 it was reported that large bands of northern Sioux tribes had attached themselves to this agency. A year later upon the recommendation of a commissioner appointed to study the problems of these Indians, the agency was moved to its present location at Poplar, Montana. Both Sioux and Assiniboine were concentrated there. Sitting Bull came to Fort Peck with his tribe after he returned from Canada.

The Gros Ventre were living in the present area of Montana when first encountered by the whites. The Assiniboine, of which the Fort Belknap and Fort Peck groups were a part, left their mother tribe the Yanktonai-Sioux shortly before 1660. They followed the Cree northward to the region around Lake Winnipeg. They lived in Canada on the north fork of the Milk river to its junction with the Missouri. Until 1838 they were a large tribe of from a thousand to twelve hundred lodges. Small-pox reduced them to less than four hundred lodges. With a history of conflicts with neighboring hostile tribes who surrounded them, their number diminished rapidly.

The 3,881 enrollees of the Fort Peck Reservation are of two

6Missouri River Basin Investigation Staff, Bureau of Indian Affairs, Region 2, Billings, Montana, Report #154, 1957.
distinct tribal groups, the Assiniboine and the Sioux. (The Gros Ventre are located at Fort Belknap, near Harlem in northeastern Montana.) They have intermarried to some extent but those of the Siouan origin live near the Fort Peck agency and those of the Assiniboine ancestry live principally in the southwestern portion. The few enrollees who live in the northern portion are persons who have a small quantum of Indian blood and have married and integrated with non-Indians. A considerable number of Cree and Turtle Mountain Chippewa families who have no legal interests in Fort Peck tribal assets reside on the reservation. The economic status of these Indians is, in general, lower than most of the Fort Peck enrollees. Many of the Fort Peck Indians have not achieved self-sufficiency. A large number of them sold land and live on the proceeds of the sale. Income from oil bonuses and leases has gone principally to a few persons who were allotted lands in the area of development. The tradition that wealth is to be shared has, however, made it possible for many of those who did not benefit directly to profit by the income received by others.7

In 1888 the reservation became permanent and its boundaries bordered on which now are Roosevelt, Valley, Sheridan and Daniels counties. It was the second largest in Montana and included 2,093,124 acres. In 1948 there were 1,102,580 acres in trust allotments. The Indians used forty-seven per cent of their irrigated land and thirteen per cent of their grazing land. The remainder was either idle or under lease or permit to non-Indians. The Indians live in the towns of Brockton (Fort

7Ibid., p. 24.
Kipp), Poplar, Wolf Point, Oswego and Frazer. Their homes for the most part are two room log cabins. They have not attained the economic level of the white people with whom they associate.8

Congress provided that the Department of Interior could sell any lands held in trust, provided the tribal council agreed. These lands are called "Fort Peck four per cent lands". The lands held in trust included those set aside for schools and hospitals.9

Contemporary Background

In 1824 the first Rivers and Harbors Act was passed by Congress, and federal funds were appropriated at that time. The act provided that navigation and flood control works authorized would be prosecuted under the direction of the Secretary of War and under the supervision of the Chief of Engineers.10

The first Flood Control Act was adopted in Congress in 1917. This act provided funds for flood control on the Mississippi and Sacramento rivers. Under the 1917 Flood Control Act, Congress authorized surveys for flood control requiring the Corps of Engineers to give consideration to all related water uses.

In the first session of the 64th Congress, the Chief of Engineers recommended complete and comprehensive river basin studies. These reports formed a basis for later flood control legislation.

8Ibid., p. 25.

9\textit{U. S., Statutes at Large}, XLV, Part 1, p. 764.

10History of the Responsibility of the Corps of Engineers, Corps of Engineers, Missouri River Division, Omaha, Nebraska, 1950.
Map 2. This area is part of the original Louisiana Purchase and contains one-sixth of the nation. The Missouri River or "Old Muddy", had gained a reputation of pouring forth devastating flood waters. The Fort Peck Dam, the first of a series of multi-purpose dams started to impound potential flood waters in 1935. Through dams such as Fort Peck, the Inter-Agency Committee has been trying to make this great plains area more habitable.
A preliminary reconnaissance was made in the fall of 1928 to determine the general situation. Thorough investigations were carried out on the river basins in 1929, 1930, 1931 and 1932. These investigations were accompanied by a program of field surveys. Large amounts of information were collected. Material was gathered directly through the survey and reconnaissance methods and indirectly through contact with Federal, State, County and City officials as well as private corporations and private citizens. Records and reports of the Geological Survey, United States Weather Bureau, the Department of Agriculture, Bureau of Reclamation and other federal agencies were obtained and studied.

Public hearings were held in the tributary basins and in the main system area to afford an opportunity for interested parties to present their views. Congress specified how hearing funds were to be handled with another example of wise management or close scrutiny. "One hundred fifty thousand dollars is hereby appropriated for examinations, surveys and contingencies of rivers and harbors and no part of this sum shall be expended for any particular preliminary examinations, survey or estimate not specifically authorized by law." 11

Hearings were held in four Montana towns: Harlowton, May 21, 1930; Havre, March 2, 1931; Billings, August 24, 1931; and Helena, October 12, 1931.

Harlowton is on the Musselshell river, the head of a large basin. This area contains some of Montana's greatest cattle ranches. The Musselshell river contributes runoff water to the Missouri basin.

Captain Theodore Wyman of Kansas City headed the investigating committee at the meeting. The Musselshell Basin Flood Control Association was organized at Harlowton following the Flood Control Hearing held by the War Department and consisted of representatives of every service, stock and farm organization in the Musselshell Valley. Charles Bair of Billings, a large land owner in the valley was elected as president. Dan Noble, agricultural agent of the Milwaukee railroad stated the purpose of the meeting and the organization was to get information that would lead to a constructive program for better control of flood waters. Profitable utilization of all waters in the Musselshell basin was to be the end result. It was pointed out very conclusively at the hearing held in Harlowton that the following conditions regarding this situation existed: (1) That there was a heavy loss annually by farmers, stockmen and property owners from the excessive floods during the spring of the year which caused run-off in a comparatively short time, doing heavy damage to soil, livestock and in some cases buildings and machinery; (2) that there was a heavy investment by stockmen and farmers in dams, irrigation ditches, and irrigation equipment and land, and that there was not a sufficient water supply during the irrigation season; (information showed that there were only about four years out of twenty when there was enough water; it also showed that there were some years when there was not sufficient water for stock); (3) that such conditions limited the feed supply of the livestock men, especially the hay lands on the bottoms, and the use of a large amount of grazing land through not having ample winter feed and at times sufficient summer stock water.
It was further pointed out that, if the flood waters of the spring could be controlled and spread out during the summer season, there would be sufficient water for all purposes and all the projects constructed locally, in addition to being a part in a national flood control program.

The organizations of the valley represented in the Flood Control Association were: the Upper Musselshell Wool Growers Association, the Harlowton Commercial Club, the Kiwanis Club, the Ryegate Commercial Club, the Golden Valley County Farmers Union, the Roundup Rotary and Lions Clubs, and the Montana Farmers Union. The members representing the different organization and serving as directors of the Musselshell Basin Flood Control Association were: Charles Bair, Billings, F. B. Peterson and Walter Scott, Roundup; L. R. Daems and W. C. Husband, Harlowton; C. H. Corrington, Lon Goffner and Guy McLaren, Ryegate; Ed Settle, Martinsdale; T. T. McCormick, George Groves, Magnus Linstrand and Judge B. J. Jeffries, Roundup.\(^{12}\)

Havre is the largest town in the valley of the Milk river which furnishes drainage for a huge area. The Havre hearing was called by Captain Collins, Chief of the Corps of Engineers of the Hydraulics Division of the War Department, with headquarters in Kansas City. Presentation of the facts and arguments was handled by District Judge G. B. Elwell, who was chairman of the committee which had gathered data for the Army Engineers. Danger of menacing floods had kept farmers of the valley to the old method of farming and raising hay crops, which was not

\(^{12}\)The Harlowton Times, Harlowton, Montana, May 22, 1930.
particularly profitable. Representatives from the various districts were: R. L. Howard, Sugar Company of Chinook; G. H. Bingham, Extension Service; H. B. Bonebright, Fort Belknap Reservation; J. F. Overcast, Paradise; R. H. Parkinson and H. M. Montgomery of Zurich; and T. M. Everett, Harlem. Industry was represented by E. C. Leedy of the Great Northern Railroad and J. C. Dow of the Montana Power Company of Great Falls. There were two Canadians present, J. S. Tempe, Commissioner of Irrigation, Calgary, and Newt H. French of Calgary. Many farmers and interested spectators attended. 13

Billings is the largest of the towns in which the early hearings were held. It is located on the Yellowstone which has its headwaters in Yellowstone Park in southwestern Montana. The Yellowstone flows in a northeasterly direction, joining the Missouri just east of the Montana-Dakota border. Wyoming showed interest in the meeting and was represented by U. S. Senator John Kendrick. The Wyoming interest was in regulating the flow of the Yellowstone river, and to allow state and interstate handling of any future developments. State Engineer J. S. James emphasized the need of reduction of erosion and said full control and utilization of the Yellowstone river was possible. Captain Theodore Wyman, District Engineer of the U. S. Army Engineers, was in charge of the hearing which had drawn a large number of businessmen and ranchers interested in the problem. 14

The hearing in Montana's capital city came in October of 1931.

13 Great Falls Tribune, March 3, 1931.
14 Ibid., August 24, 1931.
Helena is the shopping center for a large area in which there is mining, lumbering and ranching. On October 12 a meeting was held in Helena. The Associated Press reported that water storage was discussed at the meeting and greater utilization of water was recommended. Captain Theodore Wyman and Captain H. W. Collins of the Kansas City office of the Army Engineers, represented the government. J. S. James, State Engineer of Montana, remarked that beneficial use of water resources is of primary importance to the establishment of a permanent agriculture in Montana. Ralph D. Rader, State Highway Engineer hoped that any dams across the Missouri river would be used for highway river crossings. Other speakers were: J. E. Kanouse of Townsend; J. G. Derring of St. Paul, representing the Northern Pacific Railroad; S. R. Robbins of Augusta; and E. H. Stufel of Belgrade.

Previously Congress had passed an act for control of floods on the Mississippi and its tributaries and for other purposes. An appropriation of $325,000,000 was made for expenditures under the provisions of the act. This sum did not include actual work on the Mississippi river but only on the tributaries incidental to destructive floods. For the Missouri and its tributaries, it provided that an additional sum of $5,000,000 was authorized for study of tributary work to insure that all work was consistent with the Mississippi work.

The legislation also provided that the head of the Mississippi flood control work should be a brigadier general and have the same status

15Ibid., October 13, 1931.

and pay as a regular army general. When condemning lands three commissioners were to be appointed to study land valuation and all cases of dissatisfaction would be settled in district court. The idea of securing a river channel from Sioux City to the mouth of the Mississippi was being considered. The best plan to come out of the "308 Reports" would provide a channel of between eight and nine feet. A large dam would have storage of 17,000,000 acre feet at a cost of $82,000,000. The smaller dam would store 6,600,000 acre feet at a cost of $30,000,000.\(^\text{17}\)

River development proponents reached the point of greatest enthusiasm when congress passed the federal "Work Relief Act". A fixed sum in the amount of $4,880,000,000 was to be used for slum clearance and grade crossing elimination. The principle idea was to alleviate distress.\(^\text{18}\)

Senator Vandenberg of Michigan had some curt and interesting remarks concerning the appropriation. He suggested the bill be reworded to read: "Section 1. Congress hereby appropriates $4,880,000,000 to the President, to use as he pleases. Section 2. Anybody who does not like it is fined $1,000." Senator Vandenberg's sarcasm did have some influence. Congress did include some regulatory instructions as to how the money was to be spent. The bill as it passed in the 74th Congress did not include Vandenberg's snide remarks, but the remarks do appear in the Congressional Record.\(^\text{19}\)

\(^{17}\)U. S. Congress, House, House Document 308, 69th Congress, 1st Session, (Reports to include effect of further control of lower Mississippi by reservoir systems in drainage basins).

\(^{18}\)Ibid.

As a result of the surveys and studies, the Corps of Engineers had two plans for a dam at the Fort Peck site. Other sites being considered at this time were those at Garrison, North Dakota and at Topeka, Kansas. One plan would call for a dam to store 6,600,000 acre feet. This project would provide a flow of 21,500 cubic feet per second, thus insuring a six foot channel at Yankton, South Dakota, which would be a boon to river transportation. The estimated cost was $30,500,000. The second proposal would provide a maximum flow of 30,000 feet per second at Yankton and 35,000 feet per second at Kansas City.20

In a report from the Engineers to Secretary of War, George H. Dern, it was stated that operation of either of the Fort Peck projects for navigation would result in incidental benefits to flood control on the main stream of the Mississippi, but those benefits would not be dependable. The great flood year 1927 was still fresh in the minds of the river basin dwellers.21

Legislation and Its Reception

On June 13, 1935 the Public Works measure passed the Senate by a vote of forty-six to thirty-nine. The bill provided $3,300,000,000 for public works and was to employ six million people. Besides the Montana delegation in Congress, Representatives James O'Conner and Roy Ayers and Senators John Erickson and Burton K. Wheeler, Montana was represented in Washington by: Governor Cooney; George Ruffcorn, State Representative

21Ibid.
from Valley County; T. C. Spaulding, State Director of Relief; and W. C. Lubrecht, Missoula.

On October 11, 1933, President Roosevelt approved $15,000,000 to be used at Fort Peck. This money came from the Public Works fund and the power of the President to channel the funds as he did caused Congress some concern. It brought about the incensed feeling of Senator Vandenberg.

A telegram from Senator Wheeler to Mayor Leo Coleman of Glasgow stated, "Doing everything possible to promote the project." A telegram from Congressman Roy Ayers stated, "The President is interested in works programs being established in the watershed of the upper Missouri in Montana."

The Glasgow Courier had the following to say on October 13, 1933: "It may be no business of a Republican paper to point out some of the doings in the Democratic camp. Sometimes we feel impelled to give credit where credit is due. Referring to credit we mean the work of Congressman Roy E. Ayers in connection with Fort Peck Dam. Both Senators Wheeler and Erickson have worked toward procurement of the project for Montana, but Congressman Roy Ayers was the first one to approach the President on the development of this area of northeastern Montana. This is in direct contrast to Montana's Chief Executive who is issuing interviews right and left telling about all he is doing. At first his support was not evident; he even failed to attend a hearing on the project while in Washington.

22 Great Falls Tribune, June 13, 1933.
23 Ibid., October 16, 1933.
24 Ibid., October 1, 1933.
He eventually climbed on the band wagon when it was safe."

On November 22, Senator Norris of Nebraska said he would sponsor a bill to accomplish the same ends in the Missouri as had been started in the Tennessee Valley. "I believe I can get the administration's support, as President Roosevelt said when he signed the Tennessee Valley Muscle Shoals Bill, that it was only the beginning of a nationwide system to develop power, improve navigation and provide irrigation and flood control."

On December 15, 1933, the Great Falls Tribune carried the following: "Senator Norris is sponsor of legislation which would eventually bring water transportation to Montana. (It is difficult to say whether Roosevelt would be for or against a St. Lawrence waterway. The State of New York for the most part is anti-St. Lawrence Waterway.)"

An early advocate of river projects, Senator Norris of Nebraska, held that rivers and harbors appropriations should not be made pork barrels for politicians. His Muscle Shoals Bill had been fought by the power interests for more than a decade. (Passed 1930.) He expected much opposition to the Missouri Development Program from the same interests. He did not believe that they would like the Missouri development any better than they liked the Muscle Shoals.

The Glasgow Courier carried the following statement by the former Governor Weaver of Nebraska: "It is recognized in Washington that the

25Glasgow Courier, Glasgow, Montana, October 13, 1933.
26Great Falls Tribune, November 22, 1933.
27Ibid., December 15, 1933.
28Ibid., December 29, 1933.
Missouri river offers the ideal possibilities along the line the President has adopted with respect to reclamation. Only one major project would be involved in controlling the Missouri river at flood stage. Mr. Weaver, President of the Missouri River Navigation Association, pointed out the many advantages for the use of the proposed dam at Fort Peck. He said that only a small amount of agricultural land would be involved. There are no costly motor roads in the area and no railroads at all. Much of the land is not in cultivation and a considerable acreage belongs to the government. The benefits would be numerous. First there would be the elimination of flood dangers. The flood damage for the past twenty-five years has amounted to fifty million dollars, not to mention the loss of life. The effect of regulated flow in the channel would be a boon to river navigation, extending navigation of the Missouri up into the Dakotas. Navigators could be assured of an eight to nine foot channel from the Dakotas to the mouth of the Missouri, if the excess waters were impounded in Montana. Besides the protection to property and the aid to river transportation, the control project would furnish a water power site. The value of the electrical power which would be created by the impounded water has been estimated to be worth twenty-nine million dollars.29

Two editorials in the Glasgow Courier, a traditionally Republican newspaper, stated that the opposition to the project was manifest but the favorable attitude toward it was much stronger as evidenced by all the Senators and Congressmen in the corn-belt states. Of course politics

29Glasgow Courier, April 28, 1933.
would have a considerable hearing. The second editorial stated that the proposed dam was attracting attention from sportsmen of many states as providing a nesting place for water fowl in the prairie and plains regions.

Royal S. Copeland, Chairman of the Senate Commerce Committee, gave his opinion to the Committee on the state of affairs in Montana. He said that power with which to operate irrigation systems, power with which to develop eastern Montana industrially, power with which to supply the home is presently lacking in the state.

At the Farmers Union Convention in Great Falls, the following was sent to the Senate. "We the Farmers Educational and Cooperative Union of America, Montana Division, go on record favoring a plan to give power to the people on a basis similar to the plan instituted in the Tennessee Valley Authority."

A telegram from W. P. Kenny, President of the Great Northern Railroad, to the Courier in Glasgow was also sent to the Montana Delegation in Congress. "I am very much interested in the proposal now before the government to center flood control in a mammoth dam near Glasgow. A dam such as proposed undoubtedly would have tremendous possibilities for power development, but I would not venture an opinion as to the practicability of this phase of the proposal. It would be of inestimable value to all

30 Ibid., July 21, 1933.
31 Ibid., July 28, 1933.
32 U. S. Senate, Committee on Commerce, 75th Cong., 1st Sess., 1937.
33 U. S. Senate, Senate Reports on Public Bills 9723-1292, 71st Cong., 2nd Sess., 1934.
northeastern Montana and to other parts of the state as well. It cer-
tainly would afford our railway a large volume of traffic and give us an
opportunity to put a substantial number of men back to work."34

George W. Dern, Secretary of War, told a delegation of thirty in-
land waterways advocates at Omaha that he was sympathetic towards speedy
completion of the Missouri development and that President Roosevelt held
the same view. "We are awaiting now, the report of the board of en-
gineers as to the feasibility of the Fort Peck Reservoir Project in
Montana."35 Chief of the Army Engineers, General Brown, stated: "Al-
though mainly a navigation project, the Fort Peck Dam will present great
possibilities for power development. These resources may be developed in
the future."36 Secretary Dern said that investigations were being made
with a view to extending the present Missouri River Barge Service to
Fort Peck.

In a letter to Mayor Coleman of Glasgow, Governor Cooney of
Montana stated: "I am quite confident that Fort Peck is going to be
built. Furthermore this is a federal project and will not be charged
up to the State of Montana in any way."

Protests

Not all Montana people were enthusiastic, nor did all look forward
with satisfaction that this huge development was to take place. A letter

34 Glasgow Courier, May 16, 1933.
35 Ibid., August 11, 1933.
36 Ibid., September 8, 1933.
37 Glasgow Courier, July 7, 1933.
to the editor in the Glasgow Courier indicated some dissatisfaction:

"There are indications that the project has advanced beyond the idle speculation and gossip. The attitude of those of us who live along the river will be of little consideration. The value of our land is not the only consideration. Perhaps in some cases it is not the chief consideration. The Courier suggestion that the ranchers buy Valley County farms and go farming is absurd. I doubt very much if there is a rancher along the river who would have as a gift any farm north of the railroad. The value of the land at so much an acre is not the only consideration by any means."[8]

The Washington Correspondent of the Chicago Tribune noted the coolness of the Army Engineers toward the Fort Peck Project.

On the day that President Roosevelt made his speech at Cheyenne, Wyoming, replying to an editorial in the Chicago Tribune and denying that his gigantic public works were a poor waste of money, the U. S. Army Engineers Corps made a sad report on the hydroelectric power potentialities of the Fort Peck scheme. The Fort Peck dam and reservoir in Montana was authorized for the asserted purpose of assuring a navigation channel of eight to nine feet from Sioux City, Iowa to the mouth of the Missouri, supplying water for irrigation and hydroelectric power and providing employment. Proponents of the scheme emphasized the supposed benefits to the surrounding territory that it would accrue from an abundance of cheap power. But in response to a request from the Senate Committee on Commerce, Major General Markham, Chief of the Engineers, last week recommended that the power plants, estimated to cost an additional $6,750,000 be not installed for the practical reason that there is no market for the power. The report said that Fort Peck dam was located in an area that is sparsely settled with an average population of 2.7 persons per square mile; that towns within airplane distance of two hundred miles include: Billings, (population 16,380); Glendive, (population 4,629); and Roundup, (population 2,577).[9]

The Army Engineers found that most of the suitable power

installations to develop the maximum capacity would consist of three units, each with an output of thirty-five thousand kilowatts. This would generate a total of 105,000 kilowatts or 117,700 horsepower. The cost of $6,750,000 for installation of power plants would be in addition to $1,293,500 already spent on construction of a penstock dam for generating power.40

General Markham also made a statement on the Fort Peck project while in Miles City:

The Fort Peck dam and reservoir on the Missouri river in Montana was authorized for the asserted purpose of supplying water for navigation and hydroelectric power and providing employment. First estimates of eighty million dollars is now estimated at $108,000,000 plus $72,000,000 for work on the river channel. Proponents said the immediate area would accrue benefits from abundance of cheap power. But in response to the Senate Committee on Commerce, recommended that the power plants estimated to cost an additional $6,750,000 be not installed for the reason that there is no market for power.41

The Miles City Star opposed the project in these words: "The Engineers said that the Federal Power Commission investigation of power possibilities, estimated that the sale of power would not pay. No irrigation projects have developed. There can be no flood control benefits if there is to be navigation benefits. The reservoir created has been called the largest duck pond in the world."42

The Milwaukee railroad filed a protest due to the project's insurance of a nine foot channel. The railroad had a line from Sioux City to Omaha which would be in competition with the river traffic in the new channel. The Great Northern continued to give aid wherever needed to further the interests in and around Fort Peck. Under the heading

40\textit{bid.}

41\textit{Great Falls Tribune, October 16, 1933.}

42\textit{Miles City Star, November 10, 1937.}
"Railroads File Protest", the Glasgow Courier reported: "Four railroads filed protests against the project: the Northwest and Burlington, the Chicago Milwaukee St. Paul and Pacific, the Rock Island and the Northern Pacific. They objected to the proposed nine foot channel which the dam was to provide between Omaha and Sioux City and a six foot channel on the upper river. This would give a loss of revenue to all the railroads."\(^{43}\)

Colonel Spaulding, Army Engineer from St. Louis, maintained that there was not enough water flowing to provide the channels spoken of. He said that the proposed project would aid navigation but it was not economically feasible. The costs would be too much in proportion to the benefits derived.\(^{44}\)

Major General Edward E. Markham, Chief of the U. S. Army Engineers, promised that he would not permit the unwise expenditure of a single dollar at Fort Peck as long as he was directing river work. "I regard such projects as Fort Peck, the Missouri river and such developments as perpetuity investments. They will bring lasting good. The investments will be there in years to come and the work accomplished still will be rendering a service to the people."\(^{45}\)

At a Chamber of Commerce meeting held in Glasgow, Montana some disadvantages were pointed out. Construction of the dam, already surveyed by the engineers, would result in the loss of much valuable land forever.

\(^{43}\)Glasgow Courier, July 2, 1933.

\(^{44}\)Great Falls Tribune, November 29, 1933.

\(^{45}\)Ibid.
The southern section of Valley County is valuable stock country and much of its value in this respect would be lost if the area along the Missouri were flooded.46

Secretary of Interior Ickes indicated he would oppose the allotment of public works funds to carry out the Army's improvement program for the Missouri river. "It is a lot of money", he told newsmen when informed that $140,000,000 would be called for. "We have already allotted $14,000,000 out there."47

In a speech to the Appropriations Committee, Representative John H. Kerr of North Carolina, referred to big dams as "a horrible example of misplanning". Elmer T. Petersen pointed out that for the St. Louis Dispatch, a champion for M.V.A., to print Kerr's statement made his observation more significant. Petersen added that Fort Peck dam costs had increased $74,750,000. "Would Congress (assuming that Congress wishes to act in the best interests of the people), have approved the project? Does Congress know that the big prairie reservoirs are destined to be short-lived sand catchers? Or does it stick its collective head in the sand and pretend that the danger is not there?48 "Flood control is mainly a problem in land use", he insisted, "though it would probably be blocked by unwieldy bureaucracy, the logical thing would be to put all flood control policy under the U. S. Department of Agriculture."49

46Glasgow Courier, April 14, 1933.
47Great Falls Tribune, October 22, 1933.
49Ibid., p. ii.
Some authorities argued that the big multipurpose dam method was not the solution to river basin problems. Such arguments professed to be based on scientific research, while others were no more than political and economic convictions. A full realization of the significance of conservation has not yet made its impact on the American voter. "The best test of truth is the power of thought to get itself accepted in the competition of the market."50

CHAPTER II
CONSTRUCTION

The largest earth fill dam; the unprecedented spending in a sparsely populated, almost wilderness area; the employment boom in a depression era; the wild west towns made of tarpaper shacks, all came to northeastern Montana.

Major Features

The Sioux City Tribune welcomed the announcement of War Department action: "The War Department has approved the Fort Peck Dam. It will form part of one of the greatest conservation and reclamation projects ever undertaken by this or any other government. It has been stated this huge undertaking will give employment to twenty-five thousand men. It will serve as protection against floods in the lower valleys of the Mississippi and Missouri river basins. It will provide water for irrigation."¹

By November 22, 1933, Governor Cooney had obtained a favorable response to a request made to Secretary of Interior Ickes, asking that Montana lumber be used for a part of the construction of Fort Peck dam.²

If a giant were to pick up Flathead Lake and carry it across the mountains and place it down in the proposed Fort Peck Reservoir, he would have to make fifteen such trips to fill the project. The figures

¹Sioux City Tribune, Sioux City, Iowa, October 9, 1933.
²Great Falls Tribune, November 22, 1933.
and the project reveal that the first estimates were quite conservative. The Engineers published the following statistics:

1. 21,126 cubic yards of earth fill dam.
2. Four outlet tunnels, length 5,386 to 7,261 feet, diameter 21/4 feet 8 inches.
3. Spillway capacity, 200 cubic feet per thousand.
4. Height above valley floor, 250 feet 5 inches.
5. Base of dam, 4,900 feet.
7. Full reservoir stores, 19,412,000 acre feet.
8. Surface area, 245,000 acres.
9. Shoreline, 1,600 miles long.
10. Length, 189 miles.
11. Depth, 220 feet.
12. Approximate maximum flow of river, 154,000 cubic feet per second; minimum flow, 9,500 cubic feet per second.

The giant project is located in northeastern Montana. The climate of the area is characterized by long, cold winters followed by relatively short, but exceedingly hot summers. Rainfall is generally inadequate for agricultural needs. (Spring planted wheat and barley are grown; the yield is light but very high in protein.)

The first order of business was to erect temporary housing for workers, repair shops and garages. By Christmas of 1933 the weekly payroll had reached fifteen thousand dollars. Bids were let for building,
March 12, 1934. The Montana Power Company built a fifty thousand volt power line to the project. On March 9, 1934 bids were received for the construction of two hundred and eighty-seven miles of power line. This line was designed to carry one hundred and fifty-four thousand volts. Provisions were made for alternate bids for copper or aluminum cable. Protests were registered by the American Legion Posts of Great Falls, Glasgow and Butte against the use of aluminum. Accepting the theory that public works projects are designed to aid in reemployment and use of local materials, the Butte Post pointed out that the use of copper cable on the powerline would greatly cut down the need for emergency relief in that area.¹

Burton K. Wheeler said on March 3, 1934, "The aluminum company is resorting to cut-throat competition when it bids against copper. It can do this because it has a monopoly on the production and distribution of aluminum".² This argument brought some results as the powerline is constructed of one half copper and one half aluminum. The copper section runs from Zurich to the government built substation at the dam site, approximately twenty miles southeast of Glasgow.

The Westinghouse Company constructed the giant substation at the Fort Peck end of the two hundred eighty-seven mile power line. Allis Chalmers built the substation at the Great Falls end of the line which was located at the Montana Power Company Rainbow Dam and Switching center. Ziebarth and Walker of Los Angeles received the contract on the power line with a bid of seven hundred forty-three thousand dollars.

¹Great Falls Tribune, March 4, 1934.
²Glasgow Courier, April 20, 1934.
Three bids were necessary, one on the all copper line, one on an all aluminum line and one on the half-copper, half-aluminum line. The power line was built to handle a load of fifty thousand kilowatts. The big user of power at the project was for the electric dredges.\(^6\)

In March of 1933, contracts on the four tunnels were let for $11,500,000. The largest single construction of the whole project, the tunnels bid, was let to Mason and Walsh of New York, an experienced company at tunneling. The bear-paw shale, through which the tunnels had to be dug, required more timber and steel than they had allowed for in their bids. The government finally, after two years, took over the tunnel work itself. A huge wooden bridge contract was let to Massman Construction Company of Kansas City. The bridge was to be used for automobile and train traffic. The bridge crossed the river at the downstream edge of the dam, at a height of sixty feet above the water level. It served as a dumping trestle for gravel hauled in by train. Additional trestles were built leading from this bridge at the same elevation along the abutments and the upstream toe of the dam.\(^7\)

Four dredge units were built right on the project by the government. Work started on this boatyard on January 11, 1934 and the entire dredging fleet was ready for use in the spring of 1935. In order to move the vast quantity of construction material for building the many and varied features of this project, a railroad twelve and two-tenths

\(^6\)Great Falls Tribune, May 4, 1934. The Anaconda Wire and Cable Company received an order for 2,100,000 pounds of copper cable.

miles in length was built from Wiota, Montana, on the main line of the Great Northern railroad, to the dam site. This railroad spur was completed by April 1934. Extensions to this railroad around the east abutment of the dam, across the spillway and to the upstream side of the dam and a switchback to the lower end of the dam, brought the total mileage of railroad on the project to forty-three miles. Another seventeen miles of track was laid at the Snake Butte quarry, near Harlem, Montana where rock was quarried to face the upstream slope of the project. This made a total of sixty miles of railroad. By April 15, 1939 over 11,645,000 tons of material had been transported from Wiota to Fort Peck. This amount includes the rock hauled in from Snake Butte.8

Employment

Frank Hayes, Reemployment Supervisor for Montana, made a broadcast concerning the labor situation in the Fort Peck region. He told men in other states to stay at home, that all employment was to be secured through local and state employment offices. Requests for men would be sent out.9

T. C. Spaulding, Director of Relief for Montana, recommended that a transient camp be set up in Glasgow to take care of the incoming number of workers. These men could be called to work on any public project by the city or county. Transient camps were not unusual at this time as there were thousands of men continually on the move. Beds, bedding and cooked meals were furnished to these transient men.10

8Ibid.
9Great Falls Tribune, November 1, 1933.
10Ibid., November 7, 1933.
Photo I. This photograph shows the site of Fort Peck dam a month before the project was approved. In the foreground is the David Frances farm which is almost on the center line of the great barrier to be built. The trees are a mixture of cottonwood and willow variety. It was the clearing of this brush that brought on the dispute over who should do the clearing. Congressman Roy Ayers protested against the proposal that the C. C. C. do the work. As a result of his efforts the Army Engineers hired men from the lists of unemployed men throughout Montana.

(Photo courtesy of U. S. Army Engineers, Fort Peck, Montana.) Sept. 1933.
Photo II. The steel sheet piling is being driven in the foundation of the dam to help insure its safety. The sheets are seventy to eighty feet long. The first sections are sunk by jetting, a process by which water pumped under pressure pushes out the dirt ahead of the piling. Some sections have been sunk as rapidly as one and one-half minutes. A second section is welded to the first and driven to an average depth of one hundred sixty-three feet. The piling extends the full length of the dam. The trucks in the background ran on a twenty-four hour basis. Load limits were disregarded with the result that broken frames were commonplace.

(Photo courtesy of the U. S. Army Engineers, Fort Peck, Montana.) Oct. 1, 1934.
Photo III. The dredge in the picture is the first of four constructed at the boatyard on the Fort Peck dam site. The floating pipeline carries the heavy river bottom sands to the dam. This heavy sand was pumped as far as eight miles.

(Photo courtesy of the U. S. Army Engineers, Fort Peck, Montana.) Oct. 10, 1934.
Photo IV. Four shafts of this type were dug into the hills above the tunnels. The bear-paw shale was loosened by pavement breakers and was brought to the surface by huge buckets. Tractor with "bulldozer" attached is being lowered into tunnel control shaft for excavation purposes. In the background across the valley can be seen the borrow pit area where four dredges are pumping material into Fort Peck dam.

(Photo courtesy of U. S. Army Engineers, Fort Peck, Montana.) May 10, 1935.
Photo V. A general view looking west along the upstream face of the nearly four mile long completed Fort Peck dam, with a portion of the reservoir shown at left. The rock riprap protects the upstream face of the dam against wave erosion, while the downstream slope has been seeded to prevent wind and rainfall runoff erosion. Located in the foreground are the emergency and main control shaft buildings which house machinery to lower and raise large steel gates to control the flow of water through the four underground diversion tunnels, which are 240 feet below ground level of the buildings. The building in the left foreground is the diesel substation used for emergency power. The town of Fort Peck may be seen in the right upper distance of the picture.

(Courtesy of U. S. Army Engineers, Fort Peck, Montana.) March 7, 1954.
Photo VI. This photograph shows the face or heading of one of the tunnels. The excavation shown is an enlargement of the pilot tunnel seen in the background. The smaller or pilot tunnel was driven because the bear-paw shale through which the tunnels were driven was very difficult to hold in position. Due to the rapid deterioration of the shale when it was exposed to the air, an asphalt solution was sprayed over the exposed portions. The Conway Mucking machine manned by a helper and an operator is loading the shale that has just been blasted loose. The Gantry or jumbo, is pressed against the heading or face of the tunnel at all times. Miners used the jumbo to put the timber and steel into place. On one occasion a tunnel caved, as the miners said, "clear to the grass roots". Government geologists were used to predict the kind of ground which was going to be encountered ahead. Humidifiers were used to keep the humidity regulated. This prevented oxidation of the tunnel walls.

(Photo courtesy of the U. S. Corps of Engineers, Fort Peck, Montana.) Jan. 6, 1936.
Photo VII. A view of the Fort Peck Power Plant structure and of the outlet portals of three of the four tunnel outlets. The other tunnel diverts water into the power plant to operate the turbines for the three generators, which have a total generating capacity of 85,000 kilowatts. The high tower portion of the structure houses three surge tanks, each of which is forty feet in diameter by one hundred sixty feet in height. The switchyard for distribution of power is shown at the right of the power plant. The concrete blocks in the foreground were installed to dissipate the energy of water released from the tunnels and prevent erosion in the earth channel downstream from the tunnel outlets. Tunnel No. 2, the outlet for which may be seen immediately to the left of the powerhouse, will be utilized to generate the power at the second power plant, construction of which is almost complete.

(Photo courtesy of the U. S. Army Engineers Corps, Fort Peck, Montana.) March 3, 1954.
Clearing the lake bottom was a large and tedious job. Much of the work had to be done by manual labor. Those who did not fully realize the significance of a work relief project, such as the employment creating Public Works Administration, wanted the government to use Civilian Conservation Corps labor to clear this huge lake bed.

The late Professor Paul C. Phillips of Montana State University, although retired at the time, suggested that I do this study. He told me that Montana was never represented in Congress so well as when Roy E. Ayers of Lewistown was sent to Washington by voters in Montana's eastern district. Congressman Ayers did not agree with those who thought C. C. C. labor would save a few hundred thousand dollars. Congressman Ayers took a definite stand against the employment of Civilian Conservation Corps workers in the clearing of the area to be flooded by the Fort Peck dam and reservoir in northeastern Montana. He said:

Recent press dispatches, in anticipating that this dam would be built, indicate that a plan is on foot to assign fifty thousand C. C. C. workers to the clearing of the flooded area. This work of clearing will be the first actual labor drawing upon the fifteen million dollars appropriated. I am for the C. C. C. men and their program, but I am unqualifiedly opposed to diverting them from their previous assignments and putting them on this work. I believe this work of clearing should go to relieve the local unemployment situation. We have thousands of bonafide Montanans who need, but abhor relief. They want a way to relieve their situation by their own labor. They resent the dole. If the appropriation can be credited as being for their self sustenance, they will grasp it. Now that the government is in a position to create the appropriation, I hope they will do so. Let unemployed Montanans do the work of clearing the area. This will work a triple benefit: first, the area to be flooded will be cleared; second, home people will be benefitted; third, a burden will be taken from the relief fund.11

On May 18, 1934 the following news item appeared in the Glasgow

11 Ibid., October 15, 1933.
Photo VIII. This reproduction was from the microfilm files of the Great Falls Tribune by William D. "Scotty" James, the Tribune City Editor. When this issue of the Tribune appeared, Editor James was part of the rock picking crew at the Cottonwood Coal Company Mines at Stockett, Montana. He saved his four dollars and fifty cents per day and went to Journalism school at Montana State University where he became Editor of the University campus publication, the Kaimen.

(Photo courtesy of the Great Falls Tribune, Great Falls, Montana.)
"Valley county men are walking the streets, broke. They are getting the worst of it. The total number of county men employed is two hundred less than one month ago. There is no use for us to take our fight to the state officials, we must take it to the federal officers. The ten hundred unemployed in Valley County are in addition to the five hundred in the jungles of Glasgow.\(^{12}\) By the end of March 1934, the Courier reported that 1,531 persons were employed at the dam site; of this number 1,290 were Montana people. By May 1, 1934 the Courier could report that there were now three thousand persons employed on Fort Peck.\(^{13}\)

Men who had been other than dishonorably discharged were given the first chance at jobs. Residents of the county were given second chance and residents of Montana third. All must be registered as unemployed. The wage scale gave unskilled labor fifty cents an hour and a thirty hour week. (The N. R. A. was still in effect.) The pay varied for the amount of skill required to do the job. Some skilled workmen received one dollar twenty-five cents an hour. Foremen and overseers received one hundred twenty-five to one hundred seventy-five dollars a month.\(^{11}\)

The author of this study graduated from high school on Thursday and went to work on Monday, for sixty cents an hour, as a laborer on the power line crew. The work was being started on the Great Falls end of the line. My first work away from home took me to Fort Benton, Montana.

\(^{12}\)Glasgow Courier, May 18, 1934.

\(^{13}\)Ibid., May 1, 1934.

\(^{11}\)Records of Unemployment, Unemployment Office, Valley County Courthouse, Glasgow, Montana, October 1934.
The sixty cents an hour went a long way at that time. My room cost a
dollar and fifty cents per week. At the Overland Cafe, operated by "Ma"
Green Sullivan, workers on the line building project could order from
the menu for eighty-five cents per day. The only stipulation to the rate
was to eat at off hours.

My associates on the four man crew included an operator, Frank
Love who had worked on power lines at Boulder dam; Mike Otten, the driver,
who had worked fifteen years with the telephone company at Helena; and
Henry Lukes, the other laborer, who had spent five years at the Great
Northern car shops in Great Falls.

When the power line was finished about October 8, 1934, I went
back to Great Falls. Within a week I was back at Fort Peck as a miner in
the tunnels. This job paid ninety cents an hour. We roomed in a newly
built barracks and ate at a commissary. Room and board were charged
according to the hourly wage. I was charged nine dollars a week. The
barracks were cleaned daily, which was more than I can say for some of
the occupants, even though excellent facilities were provided.

In spite of the regulations about hiring local men, only five out
of forty-eight men in the barracks in which I stayed were from Montana.
Some had worked through Montana on bridges, power dams, highways and in
the mines. Later on, Butte miners came to Fort Peck and the transients
seemed to disappear or perhaps they were lost in the crowds.16

On December 22, 1933, Senator B. K. Wheeler made the plea to

15River Press, Fort Benton, Montana, Letter from the Editor,
Overland Cafe, 1921-41. Overland operated in 1866 by Jacob Schmidt.
16Glasgow Courier, August 15, 1936.
Colonel B. C. Moore, District Engineer from Kansas City, requesting that miners from Butte, Roundup, Bear Creek, Red Lodge, Belt and other mining towns be used whenever possible, as unemployment in the mining industry was very acute.17

I lived in a small Montana coal mining community. The mines belonged to the Great Northern Railway. We were very fortunate because the railroad could mine and use its own coal cheaper than it could buy oil. Before the depression of 1929, the railroad was converting all of its engines to oil.

Thousands of men came to Montana and registered at Montana's unemployment offices. When asked where they were from the answer might be "Hell-ē-na" for Helena, or "Hav-ree" for Havre. It was not a case of choosing the kind of work they wanted to do; it was just a case of looking for anything to do. These men needed work. Montana was not nearly as bad off during the depression as the large population centers in the midwest, east and south. One particular person, Calvin Faris of Great Falls, had worked the winter of 1933-34 feeding cattle. He received twenty dollars, a pair of overalls and a pair of shoes for seven months' work. This was in the White Sulphur Springs area in Montana.

Most landowners favored the dam. If "exorbitant prices" were asked for any of the land it might have been necessary to resort to condemnation proceedings. The ranchers in Valley County took jobs on the project during the off season when they were not trying to plant or harvest a crop.

An editorial in the Glasgow Courier discussed the effects of

17Great Falls Tribune, December 22, 1933.
having this huge project start up so far from the centers of America's civilization. The editorial stated:

What it means to us is that sixty-five million is to be spent. Labor will get a large portion of the money, part will be used to reimburse the farmers whose acreage will be inundated. (Most of these men favor the project.) Stockmen will lose the sheltered river bottom feeding areas. Their land will be damaged and they should be fairly compensated. People below the dam site hope for irrigation, with the cost of ditching their only expenditure. The Superintendent of the Fort Peck Indian Reservation stated that there are two ways of taking care of Indians in this area, by continued issuance of rations or by irrigation where they will become self-sustaining people, in no need of allotments from the government. Is it any wonder that people of this section are jubilant over the dam project? Many benefits will result. There will be some disadvantages naturally. The bigness of the project is difficult to conceive and its indirect results in northeastern Montana may even be greater.18

Havre, Montana, is considered to be a railroad town. It is on the main line of the Great Northern railway and at the junction of the north-south line running from Havre to Great Falls, Helena and Butte. It also is the northern terminus of the Havre, Lewistown, Laurel and Billings route of the Great Northern. Havre is located one hundred and sixty-five miles west of Glasgow. The editorial in the rather conservative Havre Independent, stated: "Right now is the time for us to forget any local disputes and get behind the Chain of Lakes Reservoir and the big dam east of Glasgow. . . . Getting them underway will assure railroad tonnage and employment and give the farmer a good crop for his 1933 acreage and next fall we should all ride a wave of prosperity".19

In addition to the strictly engineering purposes, the dam was

18Glasgow Courier, May 19, 1933.
19Havre Independent, Havre, Montana, June 11, 1933. Chain of Lakes is a dam built east of Havre. It is used exclusively for flood control and irrigation.
initiated to provide work for the unemployed. In the summers of 1934 and 1935, over 7,100 persons were at work on the project. Employment figures stood at over 10,000 from June 15, 1936 through October of that same year. The peak was reached at 10,536 on July 15, 1936. Over 61,000,000 man-hours had been expended on the project up to February 1, 1941. Using the multiplying factor of \(2\frac{1}{2} \), the ratio of factory to job site employment used by the U. S. Bureau of Labor Statistics for P. W. A. construction projects, it is estimated that Fort Peck had contributed over 213,000,000 man-hours of work to the national employment up to February 1, 1941.\(^{20}\)

Wild West Dam Towns of the 1930's

In November, 1936, a new magazine named Life began publication. The Fort Peck dam and the surrounding shanty towns made up a large share of the copy for the first issue to be published. Margaret Bourke White photographed and wrote about life at Fort Peck, Montana during construction:

There are six shanty towns, short of sanitation—long on bars. Wheeler, Montana has three thousand five hundred inhabitants and sixty-five small businesses of one kind or another—mostly another. A second town hopefully named New Deal, a third named Delano Heights and a few miles away Square Deal, Park Grove and Wilson. The red-light suburb is Happy Hollow. Water in the cities of the new wild west comes from wells, many of them shallow, some condemned—and at that it may cost you a cent a gallon. Sewage disposal is by the 'chick-sale' system. Compulsory typhoid fever inoculation is non existent. Fires are frequent, Wheeler has had twenty, more or less this year. Nevertheless the workers here refuse to move to the army's sanitary barracks. Life in the barracks is too expensive; life in the shanty towns too gay. When the army tried compulsion, they wrote to Montana's Senator

\(^{20}\) U. S. Corps of Engineers, Fort Peck Dam, Fort Peck District, War Department, Fort Peck, Montana, June 1, 1947.
Wheeler for whom their metropolis was named. They won! One of its shanty towns has sixteen all night 'whooperies'. The workers are on night shift as well as day, with the result that there is always someone yelling for whiskey or calling on the little ladies of Happy Hollow. Ruby is the founder of Wheeler. What she learned in the Klondike she has turned to good account. The only drink you can legally sell in Montana is beer and you must not sell that to the Indians. For the heavy liquor, the customers go to another bar behind. It is merely a formality, the back bar is just as open.21

The Great Falls Tribune had this comment to make on the new magazine being published:

The mushroom towns surrounding Fort Peck dam in Montana, command first position in the initial issue of the new magazine 'Life', which has just appeared on the newstands. Publishers of the magazine sent Margaret Bourke White to the northwest to get pictures of large construction projects to use in the national picture publication. But the eastern camera artist, arriving at Fort Peck, found the life which surrounded it much more interesting than the construction project itself. Following is the word picture Miss Bourke White sent back to her eastern publication: 'Existence in the average W. P. A. community adjoining the big work relief project near Fort Peck, Montana, is one long jamboree—slightly juggled by payday. A new 'wild west' has grown up in the nest of six work-relief towns surrounding the gigantic earth dam in construction on the headwaters of the Missouri river. College boys mingle with bums in the crowd, competition between hot spots is as keen as it is in New York, and if the hombres aren't as tough as Billy the Kid, they are tough enough—particularly on payday. Mothers carrying children in arms to beer bars, shirt sleeved men crowding taxi dancers at five cents a dance—such are typical scenes in the six wide open towns euphoniously labeled 'New Deal', 'Square Deal', 'Delano Heights', 'Wheeler', 'Park Grove', and 'Wilson'.22

Such places as the Buckhorn, the Spot, Ruby's Wheeler Inn, Pennsylvania Mike's, and Black Jack were famous at having washed-out blondes who were experts at retrieving pay envelopes from ignorant and inebriated workers.

Common law marriage was very common; this allowed the worker to

21Life Magazine, Wild West Towns, November 23, 1936.

22Great Falls Tribune, November 30, 1936.
leave the government provided barracks to live in a shack made of boxes and tarpaper. Men would fight with bare fists in front of a crowd over the right to claim some bar-maid or taxi dancer for his own. She might then cohabit that night with some other worker and leave the two gladiators to stare at each other or to try to forget what happened by passing out on cheap whiskey.

Such names as "Close-to-the-Ground Shorty", "Little Shorty", "Plain Shorty", "Slim Blackie", "Blackie", "Blackie-the-Goose", "Big Scotty", "Bohunk Mike", "Carl-the-Swede", "Oklahoma Harry", and "Russian Bill", were some of the nick-names used to identify the men.23

In 1945 Joseph Kinsey Howard testified as a private citizen, author and Montana historian. "Ten years after the dam was started, the towns near the huge body of water are still trying to find some recreational use for it, trying without leadership or skilled service. The Army walked off and left towns which construction had created, towns whose picturesque squalor won them the featured position in the first issue of Life magazine. A few weeks ago the County Commissioners moved to abandon the voting precinct in the last of these towns; this is an argument for regional authority."24

As late as 1939, about six years after the construction began on Fort Peck dam, Wheeler still had a population of approximately four thousand people. It was described as a modern frontier town, made up of

23Interview. This information came to the author in an interview with Roy Paus, former owner of the Buckhorn saloon at Wheeler, Montana. Paus now operates the general store at Opheim, Montana. January 1959.

shacks hurriedly built of tar paper, packing cases, ship-lap, and canvas. Along the main street of the camp, neon signs announce the products of a more urbane world.25

In 1960 the author traveled through the area about which Joseph Kinsey Howard testified. There were no teeming crowds of workers coming or going to work. The only neon sign was that of the old Buckhorn saloon. The Fort Peck townsite where the administration buildings are located seemed intact. Instead of burley construction workers, the only activity came from a corner lunch counter and souvenir shop where a high school group bounced and giggled over a nickel coca-cola. The vicinity seemed quiet, almost deserted, even though a second power plant was under construction.

CHAPTER III
FLOOD CONTROL AND POWER DEVELOPMENT

Efforts to control floods; the Corps of Engineers fight for flood control; hearings in Montana towns relative to flood control all help to promote the high dam at Fort Peck. Power shortage and future demand discussed at hearings; the decision to have generating and transmission facilities installed, place the Bureau of Reclamation into the power business.

Flood Control

That the Federal Government had a definite interest and assumed responsibility for flood control had been established for over one hundred years. This came with the Rivers and Harbors Act of 1824. The assumption of further responsibility and reiteration of established practices came to the fore again in the Flood Control Act of 1917.

In House Document 308, 64th Congress, the Chief of Engineers recommended complete and comprehensive river basin studies. These reports when turned in were called "308" reports and formed a basis for later legislation for flood control. In the Flood Control Act of 1936, Congress established a national policy on flood control of streams.¹

Under the provisions of the Flood Control Act of 1928, Congress appropriated $325,000,000 for expenditures on the Mississippi. The Secretary of War through the Corps of Engineers, U. S. Army, was directed

to maintain control on all tributary streams of the Mississippi system, subject to destructive floods. An additional sum of five million dollars was authorized for study of tributary work to insure that all work was consistent with the Mississippi work.²

A letter from the office of the Chief of Engineers to George H. Dern, Secretary of War, discussed major floods in the Missouri river basin:

Major floods in the Missouri basin occurred in 1881, 1884, 1903, 1908, and 1915. The flood of 1884 was the largest on record on the main stream. The flood of 1903 was the most destructive. On the lower river, floods generally occur during the period May 16 to July 15. Two high water periods in a normal year, the first in April of short duration and caused by melting snows over the Great Plains; the second, a June rise, is generally higher and of longer duration and is caused by melting snows in the headwaters combined with heavy rains in the lower basins. From 1900 to 1933 flood stage at Kansas City was exceeded seventeen times. The total area of agricultural lands in the basin subject to destructive floods is approximately 2,121,800 acres with annual flood losses estimated at about four million five hundred thousand dollars.³

The Corps of Engineers stated that no better example of a big multiple purpose river project exists today than Fort Peck dam and reservoir on the Missouri river in northeastern Montana. Put into operation in 1938, the dam provided flood control alone that prevented about one hundred million dollars in flood damages. Victory over the Missouri at Omaha and Council Bluffs in April of 1952 would not have been possible except for the one-foot-plus that Fort Peck reservoir shaved off the

³U. S. Army, Corps of Engineers, Water Resources Development, Missouri River Division, Omaha, Nebraska, January 1953.
Some critics argue that the probable savings in dollars and cents, as a result of some big dam catching potential flood waters, are hypothetical. In 1948, the top feature of an ambitious program was seen in the meeting of the National Reclamation Association at Oklahoma City. The Army Engineers produced a huge exhibit outlining a civil functions program, chiefly huge dams, involving the spending of $57,000,000. One critic insisted that there was not even a pretense that the people of the United States had asked for such a program and that it was born in the fertile minds of Washington bureaucracy. The author of these chapters is of the opinion that regardless of when an idea is born, it must undergo the close scrutiny of congressional procedure before it can become anything more than just an idea.

Since 1938 the project has been used for navigation (downstream) and for flood control. Congress was told that Fort Peck dam had reduced major floods along the Missouri river downstream, ranging up to three feet at Omaha, Nebraska with preservation of an estimated fifty-one million dollars in flood damages during the 1938-1939 periods.

Following the devastating floods of 1943, Harold L. Ickes wrote the President that the immediate post war period should see an initial allotment of $200,000,000. This allotment could be justified by the

1Ibid.

economic and human needs. Secretary Ickes wrote that flood control would not be directly reimbursable. The letter of Secretary Ickes coming when it did, a year after the big flood which caused so much damage, was similar to the thinking of the dry land farmers of the Missouri basin area. They urged irrigation after the 1930's when some yields were less than ten bushels per acre. Those farmers who remained in the area and particularly those who were forced to leave knew that water was the answer.7

A review of information on Missouri river floods presented to Congress found that the floods to be controlled are comprised of the following:

(1) ice jam floods through North Dakota and South Dakota
(2) floods produced by melting snow and rain falling on frozen ground
(3) the floods from the melting of snow in the high mountains in conjunction with heavy rains on the plains. Ice jams form on the Big Horn, Yellowstone, and Missouri rivers, when warm weather in late winter melts enough snow to produce a light flood, which dislodges heavy ice cover on these streams. Little damage results, except when jams forming immediately below populated areas result in flooding of homes and improvements. These jams sometimes cause local rises in water surfaces of thirty feet. This situation will be improved by the winter release of stored waters for power production which will raise stream temperatures.

Power Development

"Power is a cash crop; no cash, no crop! Available sites seized by a monopoly holding company and permitted to stand undeveloped while rivers occasionally dry up and industry shuts down for lack of current, while public development is resisted by every agency of propaganda and propaganda."
political intrigue."9 These few words in print summed up the thoughts of many.

In 1933 the total existing hydro plants in the entire Missouri basin was about 4,59,000 kilowatts. Fifty-seven per cent of the hydroelectric capacity was found in Montana. A total of thirty-six potential systems involving seventy-nine plants with an aggregate installed capacity of 2,776,780 kilowatts, at an estimated total cost of $410,000,000 were found to have sufficient merit to be included in a plan of ultimate development. Top estimates of the cost of production ranged to a maximum of 13.7 mills per kilowatt hour and the District Engineer considered this cost range not out of line with possible future cost of production from competing sources of power in the specific localities of the several projects, if and when the demand increased sufficiently to absorb the potential output.10

The inability of operating power plants to meet the demand for power had resulted in not only great inconveniences to the public but had definitely and directly increased unemployment in Montana. The economic loss was great. Men were without employment, not because there was no demand for their services, but because of a lack of that which today is recognized as a necessity of life, electrical power. Such a combination demanded immediate remedy. As early as 1933, the Army Engineers were already making plans for the installation of penstocks and power development.

In a critical mood the Cascade County Trades and Labor Assembly at Great Falls, Montana sent a memorial to the State Legislature then in session in Montana's capital city of Helena. "A public utility accepts a responsibility to supply adequately the needs of its users, and due to lack of foresight, the Montana Power has signally failed to provide sufficient power facilities to permit continued operation of the zinc plant of the Anaconda Copper Mining Company at Great Falls, thus depriving hundreds of men of their means of livelihood and possibly entailing the curtailment of Butte and Anaconda operations as well, and depriving the A. C. M. and American industry of metal products now so much in demand." The Memorial emphatically requested that proper steps be taken to develop power facilities at Fort Peck.

Senator Wheeler submitted a resolution to the Senate Committee on Commerce requesting a survey of the possibilities of developing power at Fort Peck. This committee resolution, adopted January 15, 1937, observed that "the Montana Power Company furnishes over ninety per cent of the electrical energy consumed in the state of Montana and at this moment, they are able to meet only seventy-three per cent of this demand." All receipts from transmission and sale of electric energy generated at the Fort Peck project were to be paid into the Treasury Department of the United States, to the credit of miscellaneous receipts, although the Treasurer was empowered to set up and maintain from such receipts a

continuing fund of $500,000 to the credit of the administration and sub-
ject to check by him, to defray emergency expenses and to insure continu-
ous operation. 13

The Montana Standard commented on the power shortage:

Due to the lack of power from the hydroelectric plants along the
Missouri river and its tributaries which threatened to grow more
and more serious, the Anaconda Company has been forced to make
severe curtailment in its operations. As a result, the Orphan-
Girl mine in Butte has been closed. A part of the crew of two
hundred eighty men will be retained for development work. A
slag plant at East Helena has been shut down and the sand tailing
operation at Anaconda has been suspended. The zinc concentrator
at Anaconda also has been closed. On July 28, 1937 the people of
Butte and vicinity, who are served by the Butte Water Company,
are called upon to conserve the water and limit their sprinkling
of lawns and gardens in order that the water company may cut down
on its requirements for electric power in its pumping operations.
To pump this water requires electricity to the extent of forty
thousand kilowatt hours per day to supply the citizens of Butte
with water. Every drop of water used by the people of Butte to-
day has to be pumped from the Big Hole river. We appeal to the
people of Butte to use as little water as they can possibly get
along with for the next months and avoid all waste. Every drop
of water saved will save the demand on the Montana Power Company
for electric current and help the Anaconda Company to keep men
employed on the hill and avoid the possibility of closing more
plants. 11

Officials of the Great Falls Reduction Works of the Anaconda Copper
Mining Company were informed by the headquarters office of the company that
copper refining operations at Great Falls would be forced to shut down be-
cause of lack of electrical power. The news was received Thursday morning,
July 22. The plant did shut down on Thursday night. The zinc plant and
rod mill continued in operation however. 15

13 Ibid.

15 Great Falls Tribune, July 23, 1937.
Public hearings to discuss hydroelectric development were scheduled at Bismarck, North Dakota, March 1, 1937; Miles City, Montana, March 2, 1937; Great Falls, Montana, March 3, 1937; and at Fort Peck, Montana, March 4, 1937.

The Tribune carried the following Associated Press coverage on the hearings:

At Bismarck, North Dakota, State Engineer E. J. Thomas testified before the U. S. Army Engineers that a considerable demand for power developed by the Fort Peck dam would be created if a proposed irrigation program, along the Missouri, is carried out. The State House of Representatives, he testified, has already passed a bill providing a $500,000 appropriation and a bond issue up to one million dollars for irrigation purposes. Presiding at the hearing were Captains H. B. Loper and L. R. Graves of Kansas City. Walter Reardon, Engineer of North Dakota Power and Light, told engineers when asked if his company would consider carrying additional power over the transmission lines rather than increase the generating plant at Beulah, North Dakota, 'That would depend on the price'.

At Miles City, J. D. Scanlon, Miles City publisher, advised a public hearing conducted by the Army Engineers that the Montana-Dakota Utilities Company would give a four mill kilowatt hour rate if adequate power could be secured from the Fort Peck dam. The hearing was the second of a series to determine the feasibility of developing power facilities at Fort Peck. Scanlon represented the Miles City Commercial Club and said his organization was willing to cooperate in any advantageous project. A letter was read from Senator Burton K. Wheeler, Montana Democrat, asking the power company to supply power at a two mill rate. Wheeler also said the possibility was being investigated of obtaining P. W. A. labor for the project. Representatives from Hysham, Forsyth, Sidney and Jordan advised that there was land in their territory which could be irrigated if power could be

16 Ibid., March 2, 1937.
purchased cheap enough for pumping projects. Captain L. R. Groves, and C. N. Ivy, technical advisor in charge of the hearing, said that approximately eleven thousand primary kilowatt hours of power could be produced at the dam. Secondary power was not estimated. The cost of running a power line from Fort Peck to Miles City was estimated at a million dollars but it was explained that adequate figures would have to come from Congress which would have to decide who would pay the cost.17

Flatly divergent opinions concerning the necessity for federal production of power at Fort Peck were expressed in the Great Falls hearing under the auspices of the Army. Chief spokesman for those opposed to the federal program was F. M. Kerr, President of the Montana Power Company, who presented figures to show that with normal precipitation the company's plants were adequate to supply a far greater power demand than then existed or was likely to exist in the near future.

"A major purpose" of the hearings being conducted by the War Department, Captain Groves declared in opening the session, "is to determine if power which may be produced at Fort Peck can be used in a manner beneficial to adjacent areas and the nation as a whole."

First to present testimony at the hearing was Homer Whittmore, Cascade County Trades and Labor Assembly, who submitted a written brief covering the stand of the labor body. At the request of Captain Groves, Whittmore read portions of the brief. These pointed to the closing of the local zinc plant of the Anaconda Copper Mining Company, an event which threw hundreds of men out of work when the Montana Power Company could not

17\textit{Ibid.}, March 3, 1937.
supply power to operate the plant. "This event is evidence that the Montana firm does not have sufficient foresight in providing a power supply."

Whittmore also read from the brief accusing the company of too much delay in building the dam at Polson.

John Clark, financial secretary of the Mine, Mill and Smeltermen's Union, said that the plant closing had thrown hundreds on the relief rolls. While the union had no specific technical information as to the amount of power needed, it was interested in preventing a recurrence of the recent power drought.

In behalf of the Farm Labor Party, E. G. Lee presented a petition recently adopted at a convention of the group recommending public ownership of all public utilities, recommending federal development of power possibilities at Fort Peck and especially requesting that the government maintain permanent control of the power line between the Rainbow switching stations at Great Falls and Fort Peck.

Captain Groves at this time announced the receipt of a communication which had been handed him by the Farmers Union Fire Insurance Company. The communication stressed that it represented two thousand statewide residents and it urged that the government develop Fort Peck power resources.

Next to appear was Mayor A. J. Fousek of Great Falls, who reviewed briefly recent developments in efforts made by the city to obtain lowered electrical rates. "The city has been contemplating the establishment of a municipal light and power plant to supply electricity needed for street lighting and the operation of the municipal water plant. If the government will develop power at Fort Peck and transmit it to Great Falls, the
city will be glad to buy the power from the government." Great Falls City
Engineer Cook discussed the municipal power plant plans and stated it would
be preferable to buy government power. Engineer Cook was critical of the
demand charge of one thousand dollars whenever the power being consumed
at a definite period passed a certain peak. He also complained that the
Montana Power Company issued bills monthly but the city could only pay semi-
annually. "The Montana Power Company requires us to pay interest on these
monthly rendered bills. The interest charges for the fiscal year ending
July 1, 1936, totaled two thousand three hundred twenty-five dollars."
Captain Groves requested that the city engineer file a brief showing the
city demand for power and the amount paid to the Montana Power Company.

Engineer A. J. Cook of Great Falls stated that if rates were reduced
a demand beyond the capacity of power company plants would be the result.
S. J. Hockersmith of Fort Shaw, Montana, President of the Sun River Rural
Electrification Association, said that unless current could be obtained
cheaply at wholesale, so that its resale will permit a profit to pay the
cost of line construction, a one hundred thousand dollar loan from the
Rural Electrification Administration would not be approved. J. J. Marcus
of Fairfield, Montana, a director of the proposed Sun River Rural Electri-
fication Association, observed: "The advertised rate in Montana is two
and one half cents per kilowatt, while the R. E. A. in Washington said one
and one half cent power must be available before a loan can be approved.
If a farmer is to obtain and utilize power he must receive it for a flat
rate at about six to seven dollars monthly.

Mr. Kerr presented the views of the Montana Power Company. He
stated the question to be considered as one involving possibility of
greater power development in this part of the state, the Great Falls area in general. He doubted that any additional power produced could be marketed. He dwelt briefly on the history of the Montana Power Company, organized in 1912 when several state power firms were merged. By 1937 its lines covered all of northern Montana to Nashua and east to Billings, Lewistown and Red Lodge. The Montana Power Company had installed plants sufficient to generate two hundred ninety thousand kilowatt hours. The peak business of the company in the state was in 1928 and 1929 when a maximum demand reached 253,000 kilowatts. As early as 1920, the company made application to be allowed to develop the Polson site. Work began on that project in 1930.

Our average annual sales in 1928 and 1929 were 1,600,000 kilowatts, six months after we started construction of Polson the rate of sales was 1,200,000 kilowatt hour annually. At the end of 1931, the annual sales rate was down to 900,000 kilowatt hours. This left the Montana Power with a great surplus of idle power. We shut down the work in 1931 because we could not see that any Polson produced power would be useable at any time in the near future—then came 1935. Our power load was increasing and we proposed to resume operations at Polson. The work is now proceeding. Two hundred sixty men are employed and our finishing date is 1938. The company is criticized for not anticipating the demand that now exists. I doubt if there are any who could have foreseen several years ago that copper would be fifteen cents per pound and zinc seven cents and both in enormous demand. The direct cause of the power shortage is drouth. Water in the Missouri system in 1936 was only fifty-eight per cent of the volume flowing in the river during the three previous driest years recorded. Concerning the question of the need for additional power, the Fort Peck dam will be completed about 1938. At that time under conditions of normal precipitation, the Montana Power Company will have forty thousand kilowatts idle from the existing plants and fifty-six thousand kilowatts from the completed plant at Polson. Right now, a few days with the temperature above forty degrees and we will have enough power to supply all needs. If the Montana Power were in need of additional power and if power were available at Fort Peck, the company would have no hesitancy in purchasing it.18

18*Great Falls Tribune*, March 4, 1937.
Captain Groves asked Mr. Kerr if Fort Peck was completed in 1940, was there any possible economic use for power that would be produced in a plant there at that time. "No" was the answer. At this point City Engineer Cook interposed an objection to the trend of testimony. "Our problem is not one of the amount of power available. There is no doubt that under existing conditions existing plants can supply demands. The reason many are here is that they feel that if rates were proper, demand would be much larger. Consumption is low on the farms because farmers cannot afford electricity at existing rates. Many industries have balked at locating here because of high power rates."\(^{19}\)

J. F. Edwards, former Helena mayor, also spoke concerning the need for federal aid in financing electrification projects. Approximately one hundred seventy-five persons attended the hearing.\(^{20}\)

The hearings were completed when the fourth of the series was held at Fort Peck on March 4, 1937. About three hundred persons attended from Montana and North Dakota communities. Not an objection was raised to power development at Fort Peck. The testimony revealed that power from Fort Peck was needed to reclaim lands in the territory. H. L. Anspeck, irrigation engineer for the Fort Peck reservation, said that fifty thousand acres could be utilized through power from Fort Peck. Thirty thousand acres was the amount being irrigated at the time of the hearing.\(^{21}\)

Frank Kerr of the Montana Power Company, in a speech at Glacier Park,

\(^{19}\)Great Falls Tribune, March 4, 1937.

\(^{20}\)Ibid.

\(^{21}\)Ibid., March 5, 1937.
explained the power shortage. He promised to be strictly non-partisan, and simply to point out the facts:

The Montana Power Company has no criticism or no complaint to offer about this projected electrical power. We have made no appearance in Washington, nor have we approved the project in any way. On the contrary, if the government has surplus power to sell we will be glad to buy it if the occasion demands. If the original purpose, namely flood control, for which Fort Peck was constructed is adhered to, only 11,500 kilowatts can be generated. This is only one-sixth of the power required to run the zinc plant at Great Falls. The Montana Power Company is furnishing power at the Fort Peck project for two mills per kilowatt. This is twenty per cent less than the Tennessee Valley Authority rate. I will admit that for the moment adequate power does not exist but just as soon as the sun shines again and gets the temperature up to forty degrees, there will be plenty of water in the Missouri river, and we will get plenty of power. I do not anticipate another shortage— I do not see how there can be one.22

The Committee on Commerce challenged the utilities claim that it would be able to take care of future demand. "Completion of another hydro-electric unit by the Montana Power Company in 1938 will increase the available supply of power by nearly sixty thousand kilowatts, but with the natural increase in the use of electrical energy, the ability of the Montana Power, notwithstanding completion of the new unit, to adequately serve, and well serve its users may be doubted and challenged."23 The new unit of which the committee spoke was the Kerr project on the Flathead river. It had been eight years in the making. The company finally resumed work in July of 1936, after the drought had reduced water resources, and after widespread agitation for governmental erection of the dam as a public works project had developed.24

22Joseph Kinsey Howard, Montana High Wide and Handsome, p. 256.
23Ibid.
24Ibid.
Electric power that has been produced at Fort Peck since the installation of the first generating unit in 1943 has been marketed by the Bureau of Reclamation, to cooperatives in eastern Montana and in North Dakota and to the interconnected power systems of the Montana Power Company and the Montana-Dakota Utilities Company. Gross receipts for this power after transmission and sales by the bureau during the 1944-49 period amounted to $3,139,212.43.25

The vital need for power production existed, and installation of generating equipment received more emphasis with the coming of World War II. The power was used mainly for the war effort. After the war, power was sold to Rural Electrification Associations and to pumping plants. The Montana Power Company and the Montana-Dakota Utilities Company bought surplus power.26

By 1948 the following Montana and North Dakota cities were receiving power from the Fort Peck generating installations. The transmission lines and their carrying capacity were as follows:

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Distance</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fort Peck</td>
<td>Glendive, Montana</td>
<td>138 miles</td>
<td>115,000KW</td>
</tr>
<tr>
<td>Glendive</td>
<td>Miles City</td>
<td>72 miles</td>
<td>115,000KW</td>
</tr>
<tr>
<td>Glendive</td>
<td>Williston, N. Dak.</td>
<td>105 miles</td>
<td>115,000KW</td>
</tr>
<tr>
<td>Fort Peck</td>
<td>Williston</td>
<td>130 miles</td>
<td>115,000KW</td>
</tr>
<tr>
<td>Fort Peck</td>
<td>Frazer</td>
<td>22 miles</td>
<td>34,500KW</td>
</tr>
<tr>
<td>Frazer</td>
<td>Wolf Point</td>
<td>20 miles</td>
<td>34,500KW</td>
</tr>
</tbody>
</table>

26Glasgow Courier, June 26, 1943.
Substations were built at Glendive, Miles City, Williston, Wolf Point, Brockton, Medicine Lake, Glentana, Great Falls, Saco, Havre and Rudyard.27

The Montana Power Company has a 69,000 volt power line running from the Rainbow dam switchyard to Wiota and branching into the Fort Peck switchyard. The original power line built by the government was connected to this line during the war. These connections were removed in 1946.

27Reclamation Project Data, Transmission Lines and Engineering Features, 1948, p. 122.
CHAPTER IV
NAVIGATION, IRRIGATION AND RECREATION

The Corps of Engineers change from channel dredging to river regulation; the Bureau of Reclamation proposes reclamation, irrigation; and an overall master plan for recreation is inaugurated.

Navigation

In April 1907, George Fitch wrote as a friend of the Missouri river:

The river is navigable. Those who have tried to insure navigation on the river have spent too much time trying to make it conform to the boats, when they should have been making the steamboats to conform with the river. The Missouri river steamboats should be shallow, lithe, deep chested and exceedingly strong in the stern wheel. It should be hinged in the middle and should be fitted with a suction dredge so that when it cannot climb over a sandbar it can assimilate it. The steamer that cannot climb a steep bank, go across a cornfield, and corner a river that is trying to get away, has no excuse for trying to navigate the Missouri.¹

The original purpose for constructing the Fort Peck project was to satisfy the findings of the "308" reports, namely flood control and irrigation. Stored spring runoff would lower flood danger in the lower Mississippi river basin. A secondary purpose rating high in importance was the improvement of navigation. The stored spring runoff waters could be released when the down river areas became too shallow to carry on normal navigation. Concerning navigation on the Missouri, the Chief of

Engineers commented:

Navigation would in general be benefitted by power development by reason of the increase of low water flows resulting from the characteristic regulation of the power projects. Operation of the Fort Peck project for navigation would result in incidental benefits to flood control on the main stream, but these benefits would not be dependable. The large reservoir at Fort Peck worked in unison with a smaller reservoir could keep the Mississippi river channel flowing at a minimum of seventy-seven thousand cubic feet per second. This is the amount required for satisfaction.2

With the Chief of Engineers, Major General Edward Markham advocating water storage and channel depth as a primary purpose for construction, and Senator Copeland of the Committee on Commerce leaning towards power installation, it would appear that there existed a conflict of interests. Pressure from the Montana Congressional Delegation led by Senator B. K. Wheeler forced power development, thus making navigation incidental. The Montana State Legislature under pressure from Anaconda, Butte, Great Falls and East Helena sent a barrage of memorials to Washington.

The railroads were very much opposed to navigable channel development. The Great Northern was the lone exception in the area. It was only to be expected that deepening of the river channels would result in a loss for the railroads.3 Albert N. Williams, a student of the five great rivers of the west, answered part of the question on how much the railroads were going to suffer. He described the railroad routes as running north and south. He also raised the question whether or not there should be legislative means for the administration of justice to

3 Glasgow Courier, July 21, 1933.
the shippers in this forgotten region; is it either economically or politically wise for Congress to authorize one federal agency, the Army Engineers, to spend millions for the purpose of forcing another federal agency, the Interstate Commerce Commission, to wipe out freight inequalities between various sections of the country.4

Colonel Spaulding was pessimistic about whether there was enough water to provide a navigable channel. "The proposed project will aid navigation but it is not economically feasible. The cost would be too much in proportion to the benefits derived."5 Like most people in high office at that time Colonel Spaulding probably did not have an understanding of the New Deal and deficit spending.

Congress followed the age-old policy that if there is not a law allowing a specific endeavor to be carried out, a new law should be passed or an old one modified. In 1821 Congress had passed the Swamp Act, the pioneer piece of legislation in flood control. In 1917 Congress provided flood control funds for the Mississippi and Sacramento rivers. Again in 1936 Congress passed a Flood Control Act, authorizing the Corps of Engineers to make studies. These acts were modified by the 1944 Flood Control Act. This act made provisions for operation of the reservoir and power development as soon as substitute storage was provided on the lower reaches of the Missouri river at Garrison, North Dakota. The dam at Garrison is used for flood control and irrigation.

This Flood Control Act of 1944 thus established a power priority

4Williams, Albert N., The Water and the Power, p. 262.

5Glasgow Courier, July 28, 1933.
at Fort Peck. For the whole basin, navigation and flood control were provided for by downstream construction.

Irrigation

A recent student of irrigation policy in Montana has noted: "The importance of water in the development of Montana has been recognized since the days of the early farmers and miners. The efforts to control its supply have caused the citizens of Montana to give a great deal of thought to an adequate solution. The policy of control has been long and tortuous."^6

Montana lacks moisture for production of a bountiful harvest. The average precipitation for Montana over a fifty-one year period for the whole state is 15.37 inches. During the same period, annual precipitation for the western part of Montana was 17.42 inches and the central part was 11.80 inches and the eastern section 13.85 inches. But if rainfall occurs during May and June, the long days and cool nights even during a relatively dry year will produce crops enough to provide subsistence.

The Missouri river basin includes a large range of climate from semi-humid in the western one third to arid in the eastern third. In the arid section irrigation is recognized as desirable and is usually practical where water is obtainable at a reasonable cost to the user.

Economic studies have indicated that the maximum total annual charges which the best classes of irrigable land could expect to pay successfully, would range from three dollars to five dollars an acre,

^7Climatological Data, Weather Bureau, Montana Section, Vol. XLIX, pp. 1-69.
depending on the locality.

Forty irrigation projects involving 2,069,238 acres were considered feasible under federal development. Neither existing nor potential irrigation developments would have any significant influence on flood conditions. No practical combination of potential irrigation and flood control developments were disclosed by the investigations of the District Engineer. Neither did it appear practical to combine in ordinary economical manner, developments for irrigation and navigation. The District Engineer stated that irrigation had been in direct conflict with navigation in periods of low water. He expected a reduction of about eleven thousand second feet in natural stream flow during the last half of March and in April, May and June, and an increase of about sixty thousand second feet in July and increases ranging from nine hundred to eighteen hundred second feet during the balance of the year.8

Neither existing nor potential irrigation developments would have any significant influence on flood conditions.

Under the terms of the Wheeler-Fort Peck Power Bill it was provided that the Fort Peck power plant be a wartime project, approved by the War Production Board for that purpose. In peacetime, under terms of the bill, the energy would be turned over at the switchboard for use on the eastern Montana and western North Dakota pump irrigation projects. The Bureau of Reclamation called for one transmission line to run along the Missouri to Williston. A second line would run towards the Yellowstone valley. Each line would provide power for pumping stations.9

9Great Falls Tribune, September 21, 1938.
On a local basis there was a program which proposed transmission
of power to Miles City for irrigation of the Yellowstone valley.10

The Souris Irrigation Project in North Dakota was first mentioned
by the Bureau of Reclamation in 1945. By 1950, five years and
twenty-five million dollars later, a major scandal had developed.
The plan was to irrigate more than a million acres in North Dakota
and the first stages of construction had taken place. This was to
forestall a Missouri Valley Authority and was estimated to cost
two hundred fifty million dollars. With the culmination of this
project, the Bureau of Reclamation would take into its control
more land than it had irrigated in the valley in fifty years.
Now at this late date, October of 1950, it has been discovered
that a vast part of the million acres is not fit to irrigate.

In any sensible scheme of things, testing the land would be the
first step. The Reclamation Bureau has consistently balked at
such tests and as a result its soil studies have habitually
been belated and inadequate, and thousands of acres have been
ruined by poor preparation. For this reason, among others,
thirty million dollars in bureau projects has had to be written
off as a loss.

Among the reasons why Bureau projects have resulted in disaster,
is that the land the water was put on would not drain properly.
Irrigation water stayed on the land, water-logged it and turned
it into a swamp. Alkali was brought up by faulty irrigation and
sterilized the soil. One would suppose the Bureau would begin
finding out what it was doing before it did it, especially in the
case of a project huge beyond precedent in American history. But
not in the least. The Bureau went into the irrigation project as
ignorant of the land as it had gone into its first disastrous
projects forty years before. However, Dean H. L. Walker of
North Dakota Agricultural College was interested. He made tests
and studied the acres the Bureau proposed to irrigate and found
that half of the acres were composed of glacial soil which lacks
adequate drainage and is therefore unusable for irrigation.

In consequence of this knowledge, the Souris project is nominated
for oblivion, the St. Louis Post Dispatch11 reports. Yet it might have squeaked by if no one had bothered to
find out any more than did the Reclamation Bureau or the Army
Engineers. Already two and a half million dollars have been
wasted on this hare-brained scheme.11

11The New Republic, The St. Louis Post Dispatch Correspondent,
October 30, 1930, p. 7.
Superintendent Walker was elated over the emphasis on power and irrigation rather than flood control and navigation. "The residents of the Fort Peck Indian Reservation believe that water can be provided for more than one hundred thousand acres below the dam for irrigation purposes. This section will also receive benefits as a result of the construction work."12

Recreation

The Fort Peck Reservation, located on the Missouri river in northeastern Montana is fast developing into an important recreational area.13 A master recreational development plan has been prepared for the project which provides for construction of recreational facilities for the general public at several locations around the reservoir. The work on these sites includes construction of access roads, water supply on sanitation installations, shelters, boating, picknicking and camping facilities. In 1951 it was contemplated that the demand for these facilities would increase.

By checking the records at the information booths, it has been found that approximately one hundred thousand people came to the big project from outside the state of Montana between 1938 and January 1953.14 The purchase of boats and cabin cruisers by farmers, ranchers and townspeople in the surrounding area has been on the increase. The radio stations at Glasgow and Wolf Point broadcast the boating conditions

12Glasgow Courier, May 5, 1933.

with every local newscast. Small craft warnings with wind velocities are public service features in that part of Montana. "The Pines" boating and camping area has facilities for serving meals to the 4-H Clubs, the Boy Scouts and Girl Scouts as well as church groups.

The hunting of ducks and geese, as well as deer and antelope has become an attraction in the lake area. All Montana state game laws are enforced, even though this is a federally controlled area. The lake has been planted with trout. Fishing from boats on the lake as well as in the area of the tunnel outlets is now being done.

At the project on the "Big Muddy", the visitors come for swimming, picnicking and boating. Surfboarding is becoming a popular sport here on the big lake. Many more people come just to tour the project. Tourists come to fish and occupy summer cottages or camp along the shoreline. There are three active boat clubs with a membership of two hundred and forty members.15

The State Parks Division now administers recreation areas at Fort Peck Reservoir. Further recreation development should be completed as increasing use warrants and as means are provided. Whether additional reservoirs will be constructed in the near future is problematical. Many are included in the long-range plans of the Bureau of Reclamation. Each reservoir should be considered for recreation on its own merits if and as it materializes.16

15Great Falls Tribune, January 18, 1957. The Tribune reported interviewed Lynn W. Pine, Director of Recreation for the Fort Peck and Garrison, N. D. district, under the Department of Interior.

Recreation evaluations are not easily arrived at because market prices are not available to express the value in monetary terms.17

17National Park Service, Recreation Today and Tomorrow, Missouri Basin Inter-Agency Committee, 1957.
CHAPTER V

THE DAM IN CONTEMPORARY SOCIETY

The philosophy of deficit spending is closely scrutinized; the Missouri Valley Authority is proposed; and the Missouri Basin Inter-Agency Committee is organized.

Big Dam Philosophy

The original plans for either a low dam to store approximately six million acre feet of water or a high dam to store approximately seventeen million acre feet were conservative estimates. The project as it now stands stores 19,412,000 acre feet.

The Indians in the area worked on the project. A goodly number of the white workers on the project took Indian wives. Fort Peck did bring power to these Indian homes. Their hay fields are more productive because of the power from the project and are not threatened by flood waters.

Some questions were asked by President Roosevelt of Senator B. K. Wheeler. "Can we sell enough irrigation water to take care of running the dam? How much primary and secondary power could be sold to eventually pay for this project? What effect will the dam have on erosion below it? How many men will it put to work?"

The answers, if he were to look at Fort Peck today, might not have a precise wording. In fact there would have to be some explanation. The original intent has been altered to a great degree. The primary and

1Glasgow Courier, July 14, 1934.

-80-
secondary power production that President Roosevelt asked about have become the prime purpose. Power has a higher priority at Fort Peck than does navigation under the present scheme of operations. A second power plant of eighty-five thousand horsepower is now under construction. The first power plant now has a capacity of eighty-five thousand horsepower. The present power production is firm power generated from the regular flow of the river. This can be issued because of the great amount of storage both at Fort Peck and Canyon Ferry dam, four hundred miles upstream.

Canyon Ferry dam is on the Missouri and the nearest town is Helena, the capital of Montana. The dam was completed in 1954, has a height of two hundred twenty four feet, and is one thousand feet long. It is a concrete structure that required four hundred fourteen thousand yards of fill. The lake has 2,651,000 cubic feet of water. It is used for irrigation, power and flood control. It has a fifty thousand kilowatt installed power capacity and is operated by the Bureau of Reclamation.²

The Bureau of Reclamation storage at Canyon Ferry not only steadies the flow of water of Fort Peck. A look at the map of the mountains of Montana reveals that the Montana Power Company has Holter dam, located near Wolf Creek. At Great Falls, the Montana Power has installations at Black Eagle Falls, Rainbow Falls, the Ryan installation at Big Falls and the Maroney installation twenty-five miles down the Missouri river from Great Falls, which also are aided in power production

by the water releases at Canyon Ferry dam. The newest installation is
at the rapids between Rainbow and Ryan dams and the Cochrane dam.

The giant storage lake has made it possible to work in cooperation
with the down river projects of the Army Engineers located at Garrison,
North Dakota; Gavin's Point, on the South Dakota-Nebraska border; the
Fort Randall project at Pickstown, South Dakota; and the project at
Big Bend, South Dakota.

The Garrison installation at Riverdale, North Dakota\(^3\) is an earth
fill, two hundred ten feet high, eleven thousand three hundred feet long
and required 66,500,000 cubic yards to fill. The lake stores 23,000,000
acre feet of water. It is used for irrigation, power, flood control and
navigation. It has 240,000 kilowatt installed capacity and is operated
by the U. S. Engineers.\(^4\)

The dam at Gavin's Point at Yankton on the South Dakota-Nebraska
border was completed in 1956. It is earth fill, seventy-four feet high,
eight thousand seven hundred feet long and contains nine million cubic
yards. Clark Lake behind the dam has a storage capacity of 540,000
acre feet. It has an installed power capacity of one hundred thousand
kilowatts and is operated by the U. S. Corps of Engineers.\(^5\)

The Fort Randall dam at Pickstown, South Dakota is an earth fill,
one hundred sixty feet high, ten thousand seven hundred feet long and con­
tains six million three hundred thousand acre feet. It was built for

\(^3\) Townsite built at the Garrison Project.

\(^4\) Register of Dams in the United States, pp. 78-79.

\(^5\) Ibid.
flood control and navigation. It has an installed capacity of three hundred twenty thousand kilowatts. It was built by the U. S. Corps of Engineers.\(^6\)

The Big Bend dam now under construction is primarily for power. It has a storage of one million five hundred thousand acre feet and is being built by the Corps of Engineers.

The Fort Peck development in the beginning went along with the ideas of Herbert Hoover when he was Secretary of Commerce. As long ago as 1921 he was the first person to suggest officially as he did to President Harding that the federal government take responsibility for dealing with depressions. "He had then recommended that private concerns cooperate with local and national government agencies in deferring major projects during good times until recessions or depressions occurred, when costs would be low and unemployment serious, but business men resisted this idea as impractical."\(^7\) Through the years as Secretary of Commerce for two presidents and as the elected President in 1928-32, Herbert Hoover had clung to these basic ideas. Now after four years research on the New Deal, he had some alarming conclusions:

To some it appears to be a strange interlude in American history in that it has no philosophy, that it is opportunism, that it is a muddle of a spoils system, of emotional economics, of reckless adventure, of unctuous claims to a monopoly of human sympathy, of greed for power, of a desire for popular acclaim, and an aspiration to make front page newspapers. This is the most charitable view.

To other people it appears to be a cold-blooded attempt by

\(^6\)Register of Dams in the United States, pp. 74-75.

\(^7\)Herbert Hoover, American Ideals vs. the New Deal (New York: Scribners and Sons, 1936), p. 759.
starry-eyed boys to inject the American People with a mixture of European ideas, flavored with our native predilection to get something for nothing.

You can choose either one you like best. But the first is a road to chaos which leads to the second. Both of these roads lead over the same given precipice that is the crippling and possibly the destruction of the freedom of men.8

The period of Fort Peck, Grand Coulee, Tennessee Valley Authority and other federal endeavors to stimulate a lagging economy was one of bitter argument. The ideas of big government were argued pro and con. Two of the foremost critics were ex-President Herbert Hoover and the American Liberty League and its Vice President Raoul E. Desvernine.

"In vehemence and persistence none of the New Deal critics can match ex-President Hoover. In books and speeches he has kept up a rapid-fire attack. But like Desvernine and others he has been inclined to throw the New Deal and all its works into the general totalitarian cesspool, along with Fascism, Nazism, Sovietism, etc."9

Henry A. Wallace, Secretary of Agriculture in the Roosevelt cabinet explained the New Deal. "In 1934 Wallace believed it was possible to cut a path between the devil of individualism and the deep sea of collectivism."10

Those who readily snapped up job opportunities on the federally sponsored and financed undertakings paid little or no attention to what Henry A. Wallace, Herbert Hoover or the American Liberty League said. They listened to the fireside chats and interpreted the words according

8American Ideals vs. the New Deal, p. 769.
10Ibid.
to their own ideas of simple economics.

Margaret Bourke White wrote of these people and of this project:

Army Engineers, loaded with a project they didn't want and hadn't recommended, resolved to put it through on a strictly business basis. They built a decent town for their workers called Fort Peck City, fully equipped with dormitories, hospital, sanitary equipment etc., but they provided quarters only for the workers—not for all their families. For those quarters they charged rents which left the married worker without enough margin to support a second home for his family somewhere else. Consequently, to keep his family housed and to dig himself in for the winter freeze, the married worker and his friends moved a few miles off the reservation and built shanty towns.11

The author saw these shanty builders wrap canvas around their bodies in order to smuggle materials past the guards. They filled their lunch buckets with nails. They took axes, saws and hammers away from their jobs by attaching them to their legs with rolls of tape. One tool-nipper, George Belgarde, whose job it was to sharpen and supply tools to the workers, said, "I'll be damn glad when these yahbos get their buildings finished. To get the idea that work at Fort Peck was a 'lean on the shovel' job would be wrong."

One young worker, Eugene Hakola, borrowed enough money from me to buy some Wings cigarettes. The foreman threatened to fire him if he showed up on the job with his sack and papers for "roll your own" cigarettes.

Both equipment and men were expendable. Wage scales were set by the N. R. A.; there were no union agreements. Organization efforts by the I. W. W. were quite common, and many joined. But the slogan "Workers of the World Unite", had little appeal to men who had been unemployed for

11Great Falls Tribune, November 30, 1936.
years.

"A relief project started the new wild west, but you don't need a government loan to build a house there. For two dollars a month you can rent a fifty foot lot in Wheeler from Joe Frazier, the barber over in Glasgow, twenty miles away. Joe had the fool luck to homestead the worthless land on which shanty towns have sprouted. You then haul in a load of grocers boxes, tin cans, crazy doors and the building paper and knock your shack together. That will set you back forty to seventy-five dollars more. You then try to live in it--weather which can hit minus fifty degrees one way and plus one hundred ten degrees the other."12

In 1934 when I first went to Glasgow, the \textit{Daily Worker} was being given away on the street corners. If one happened to be unfortunate enough to be hospitalized, he would find that each evening as the priests, pastors and ministers made their hospital calls, so also would the distributor of communist literature and pamphlets. There was none of this on the Fort Peck project and by 1937 when I left Fort Peck, the \textit{Daily Worker} was nowhere to be seen on the streets of Glasgow.

I am convinced that such projects as Fort Peck, fostered by a new philosophy, did forestall a greater revolution than that brought on by the innovation of deficit spending, high taxes and big government in general.

\textbf{Inter-Agency Committee}

Following a series of conflicting reports from the Corps of Engineers and the Bureau of Reclamation, President Roosevelt demanded a Missouri Valley Authority. Two days later, on October 17, 19\textsubscript{34}, Colonel

12Great Falls Tribune, November 30, 1936.
Louis A. Pick a proponent of flood control and navigation came to an agreement with W. G. Sloan, a proponent of reclamation and power ideas. The result of that meeting was the Pick-Sloan plan. By the end of November Congress had passed the Flood Control Act of 1944, appropriating $200,000,000 to the Army Corps of Engineers and the Bureau of Reclamation.¹³ To reconcile the Corps of Engineers and the Bureau of Reclamation, a committee of four was appointed. The committee met on October 16, 1944 and discussed the various features supporting their plans. It was agreed that by making appropriate modifications it would be possible to eliminate the differences between the two agencies. Henry L. Stimson, Secretary of War, upon receiving the compromise plans of the two agencies, passed them on to the Bureau of the Budget. He also wrote to the Speaker of the House of Representatives recommending that due to the large amount of equipment and manpower that would be taken from the war effort, that he recommended study only, at that time. The Bureau of the Budget sent copies of the planned construction to the Secretary of Agriculture and the Federal Power Commission. By the end of 1944 a group was formed that called itself the Federal Inter-Agency River Basin Committee. The organization included the Federal Power Commission, the Land Use Coordinator of the Department of Agriculture, the Bureau of Reclamation and the Corps of Engineers.¹⁴ One advantage of an Inter-Agency Committee was the coordination of efforts. An example would be that the Department of

¹³Albert N. Williams, The Water and the Power (New York: Duell, Sloan and Pearce, 1951, 1951)

Agriculture might not ask Congress for money to fight erosion at the same time the Corps of Engineers would be planning a dam that would flood that same particular area. What started out as a compromise between Colonel Pick and W. G. Sloan had by 1954 enlisted twenty-one agencies. The broad scope of interests among the Inter-Agency Committee members resulted in a continuous lobby for more funds from Congress. The Inter-Agency Committee has no corporate power such as the T. V. A. The chief aim of the agency is to attract the interest of as many congressmen and state governments as possible. From the reception the proposed Missouri Valley Authority and the Columbia Valley Authority received, the Inter-Agency Committee method stands a good chance of continuing not only in the Missouri Valley but all over the west as well. Meeting of the Missouri Basin Inter-Agency Committee are held throughout the river basin. The first meeting on July 15, 1945 was held in Omaha, Nebraska. By May of 1954, the Agency had held ninety-four meetings and thirty-one agencies were represented.

\[15\] Albert N. Williams, The Water and the Power, pp. 264-265.

\[16\] Missouri Basin Inter-Agency Committee, Reports on Meetings, May, 1957.
BIBLIOGRAPHY

I. PRIMARY SOURCES

A. Public Documents

U. S. Army Corps of Engineers, United States Army Opinions, 1937.

Missouri Basin Inter-Agency Committee, Power Requirements and Supply, Missouri River Region, 1944.

U. S. Department of Interior, Missouri River Basin, A Report by Secretary of Interior Ickes on the Bureau of Reclamation's plans for basin development, 1944.

U. S. Department of Interior, Reclamation Project Data, Fort Peck project scheme of development, 1948.

U. S. Army Corps of Engineers, Missouri River Division, Fort Peck,

Missouri Basin Inter-Agency Committee, Reports on Meetings, 1957.

U. S. Weather Bureau, Climatological Data, Montana Section, Vol. XLIX.

U. S. Statutes at Large, Vol. XLIV.

U. S. Statutes at Large, Vol. XLIX.
U. S. Statutes at Large, Vol. L.
U. S. Statutes at Large, Vol. LII.

B. Newspapers: National

St. Louis Post Dispatch.
Chicago Tribune.
Sioux City Tribune.

C. Newspapers: Montana Papers Cited

The Advocate, Cascade County Trades and Labor Assembly, Great Falls.
Glasgow Courier.
Havre Daily News.
Helena Independent.
Great Falls Tribune.
Harlowton Times.
Montana Standard, Butte, Montana.
Miles City Star.
Chinook Opinion.
The River Press, Fort Benton, Montana

II. SECONDARY SOURCES

A. Books

B. Periodicals

Life Magazine.

New Republic Magazine.

C. Unpublished Material

D. Interviews

APPENDIX I

WAS THE MONEY WELL SPENT

On July 5 of 1957, the annual Montana Conservation Caravan visited the Fort Peck project for an overnight stay. They were told in a speech by Garrison District Engineer of the Corps of Engineers Lynn W. Pine that the Fort Peck Dam was still the largest in the world. He said that he had doubts that a larger dam would be built during our time. He explained that with the new powerhouse scheduled for completion in 1961, the total cost would be about $160,000,000.\(^1\) The installation of the second powerhouse will bring the total annual income from power alone to approximately $6,000,000.

The money spent on the project came after much protest, and Daniel F. Murphy told the Glasgow, Montana Kiwanis Club that Fort Peck was paying its own way. He pointed out that after using the lake waters for power generation and to supply the Garrison project in North Dakota, the lake contained 400,000 acre feet more than on the same date one year earlier. He explained that the lake had gained three thousand acre feet for a three year period that ended in February of 1956. The three year, three thousand acre feet gain, was realized in spite of subnormal precipitation during that time.\(^2\)

The argument is offered that these giant developments are

\(^1\)Great Falls Tribune, July 7, 1957.

\(^2\)Ibid., April 5, 1956.
expensive and that it is wrong to burden future generations with the task of paying back what we spend.

The author's answer might be found in an interview with Carl Holmes, the operator of the Montana Power switching station, about fifteen miles southwest of Thompson Falls, Montana. Mr. Holmes was referring to the Hungry Horse project.

"Two Indians wandered into a construction camp of the Northern Pacific Railroad Company. They saw two men busily sawing unusable railroad ties into stove lengths. 'What you do?' asked one of the Indians. 'We are sawing stove wood for winter,' answered one of the sawyers. The two Indians sauntered away as silently as they had approached and the inquiring look was replaced with one of bewilderment. One was heard muttering to the other, 'White man crazy! Might die! Never use 'um'.'\(^3\)

Just how the welfare of Montana is to be affected by the Fort Peck dam is still an unanswered question. The decision of setting aside blocks of power and amounts of irrigation waters has not been made. The rivers ignore the man-made political boundaries of the state, and federal development will probably mean federal discretion as to how the water will be used.

\(^3\) Interview with Carl Holmes, Thompson Falls, Montana, 1953.