9-2002

GEOL 330.01: Structural Geology

Derek Sjostrom

University of Montana - Missoula

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation
Sjostrom, Derek, "GEOL 330.01: Structural Geology" (2002). Syllabi. 3216.
https://scholarworks.umt.edu/syllabi/3216

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Course Objectives
The goal of this course is to introduce students to the patterns and processes of deformation of earth materials at a variety of scales. Lecture topics will cover faulting and fault mechanics, folding and ductility, stress and strain, and fundamental principles of plate tectonics. Laboratories will introduce techniques for visualizing three-dimensional geometric relationships and will develop skills in interpreting geologic and topographic maps and field study.

Lecture: Monday and Wednesday, 11:10-12:00, SC 348
Laboratory: Monday 12:10-2, SC 348

Office hours: Tuesday 9:00-10:00, Thursday 11:00-12:00 or by appointment.

Grading

Mid-term exam = 20%
Comprehensive Final Exam = 30%
Laboratory = 40%
Problem sets = 10%

Please read the assigned sections prior to lecture.

Things you should bring to lab...
Ruler (one of the clear ones with a protractor on it is best)
Protractor
Mechanical pencil (.5mm)
Colored pencils
Fine black markers (0.3, 0.5, and 0.7mm)
Graph paper (10 squares to an inch)
Tracing paper
We will go on at least one field trip during the semester which we will schedule during class (first weekend in October?).

We will (hopefully) have a web page soon on which lecture notes and other information will be posted. I’ll announce the address when it is up and running.

List of Topics and Reading Assignments (This schedule will probably change as we progress through the semester).

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Reading Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/4</td>
<td>Introduction</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>9/9</td>
<td>Kinematic Analysis</td>
<td>Chapter 2</td>
</tr>
<tr>
<td></td>
<td>Laboratory 1: Topographic and Geologic maps, introduction.</td>
<td></td>
</tr>
<tr>
<td>9/11</td>
<td>Kinematic Analysis (Cont)</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>9/16</td>
<td>Dynamic Analysis</td>
<td>Pg. 98-122</td>
</tr>
<tr>
<td></td>
<td>Laboratory 2: Mohr Circles</td>
<td></td>
</tr>
<tr>
<td>9/18</td>
<td>Dynamic Analysis (Cont)</td>
<td>Pg. 98-122</td>
</tr>
<tr>
<td>9/23</td>
<td>Rheology</td>
<td>Pg 122-149</td>
</tr>
<tr>
<td></td>
<td>Laboratory 3: Geometric principles, 3 point problems</td>
<td></td>
</tr>
<tr>
<td>9/25</td>
<td>Rheology (cont)</td>
<td>Pg 122-149</td>
</tr>
<tr>
<td>9/30</td>
<td>Primary Structures</td>
<td>Pg. 656-662</td>
</tr>
<tr>
<td></td>
<td>Laboratory 4: Field methods</td>
<td></td>
</tr>
<tr>
<td>10/2</td>
<td>Contacts, Fractures</td>
<td>Pg. 645-656, Skim Chap. 5</td>
</tr>
<tr>
<td>10/7</td>
<td>Fractures, Faults</td>
<td>Skim Pg. 269-319</td>
</tr>
<tr>
<td></td>
<td>Laboratory 5: Stereonets</td>
<td></td>
</tr>
<tr>
<td>10/9</td>
<td>Thrust Faults</td>
<td>Pg. 319-339</td>
</tr>
<tr>
<td>10/14</td>
<td>Thrust Faults (Cont)</td>
<td>Pg. 319-339</td>
</tr>
<tr>
<td></td>
<td>Laboratory 6: Introduction to cross sections</td>
<td></td>
</tr>
<tr>
<td>10/16</td>
<td>Trust Fault Mechanisms</td>
<td>Pg. 319-339</td>
</tr>
<tr>
<td>10/21</td>
<td>Thrust Belts and Basins</td>
<td>Pg. 319-339, 582-599</td>
</tr>
<tr>
<td></td>
<td>Laboratory 7: Advanced cross sections/thrust faults</td>
<td></td>
</tr>
<tr>
<td>10/23</td>
<td>Strike-Slip Faults</td>
<td>Pg. 357-371, 579-581</td>
</tr>
<tr>
<td>10/28</td>
<td>No Class? (GSA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
<td>No lab. (GSA)—Study for midterm</td>
</tr>
<tr>
<td>10/30</td>
<td>Midterm (GSA)</td>
<td></td>
</tr>
<tr>
<td>11/4</td>
<td>Extension</td>
<td>Pg. 340-357</td>
</tr>
<tr>
<td></td>
<td>Laboratory 8: Cross sections and maps in extensional and strike-slip regimes</td>
<td></td>
</tr>
<tr>
<td>11/6</td>
<td>Extension (Cont)</td>
<td>Pg. 340-357</td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
<td>Pages/Sections</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>11/11</td>
<td>NO CLASS—VETERANS DAY</td>
<td></td>
</tr>
<tr>
<td>11/13</td>
<td>Rift Basins</td>
<td>Pg. 340-357, 573-578</td>
</tr>
<tr>
<td>11/18</td>
<td>Folds</td>
<td>Skim Chapter 7</td>
</tr>
<tr>
<td></td>
<td>Laboratory 9: Advanced geologic map interpretation.</td>
<td></td>
</tr>
<tr>
<td>11/20</td>
<td>Folds, Cleaveage, Foliation, and Lineation</td>
<td>Skim Chapter 8</td>
</tr>
<tr>
<td>11/25</td>
<td>Microscopic Deformation</td>
<td>Pg. 152-161</td>
</tr>
<tr>
<td></td>
<td>Laboratory 10: Microscopic fabrics</td>
<td></td>
</tr>
<tr>
<td>11/27</td>
<td>NO CLASS—THANKSGIVING</td>
<td></td>
</tr>
<tr>
<td>12/2</td>
<td>Deformational Features/Mechanisms</td>
<td>Pg. 161-201</td>
</tr>
<tr>
<td></td>
<td>Laboratory 11: To be announced</td>
<td></td>
</tr>
<tr>
<td>12/4</td>
<td>Deformational Features/Mechanisms</td>
<td>Pg. 161-201</td>
</tr>
<tr>
<td>12/9</td>
<td>Shear Zones</td>
<td>Skim Chapter 9</td>
</tr>
<tr>
<td>12/11</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FINAL EXAM IS COMPREHENSIVE!!</td>
<td></td>
</tr>
</tbody>
</table>