Fall 2015

GEO 433.01: Global Tectonics

Rebecca O. Bendick Kier
University of Montana - Missoula, r.bendick@umontana.edu

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation
https://scholarworks.umt.edu/syllabi/3754

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Geology 433: Global Tectonics  
MWF 2:10-3:00  
CHCB 304  

Instructor  
Rebecca Bendick, CHCB 331  
Office hours, MF 10-12, or by appointment  
bendick@mso.umt.edu  

Prerequisites  
GEOS315 (Structure), M172 (Calculus I)  

Summary  
This course investigates the dynamics of the earth at the largest scale, with emphasis on tectonic processes and their expression in the crust.  

Texts  

Schedule  
31 August-4 September: Introduction; Overview of basic tectonics  
   READ: Chapters 3 & 4.1  
7 September: no class (Labor Day)  
9-11 September: Montana tectonics: a case study of expression and implications  
   READ: handouts from the regional literature  
14-18 September: Earth’s condensation and differentiation: mechanical variation with depth (rigid plate approximation)  
   READ: Chapter 2.3-2.13  
19-20 September: field trip option 1  
21-25 September: stress and strain in elastic media  
   READ: Supplemental readings  
26-27 September field trip option 2  
28 September-2 October: seismology  
   READ: Chapter 2.1-2.2 and supplemental readings  
5-9 October: gravity and flexure  
   READ: Chapter 2.11 and supplemental readings  
12-16 October: mantle convection and tectonic driving forces  
   READ: Chapter 12  
19 October: review session  
21 October: EXAM 1-individual  
23 October: EXAM 1-group exercise  
26-30 October: oceanic convergent boundaries  
   READ: Chapter 9  
2-6 November: continental convergent boundaries  
   READ: Chapter 10
9-13 November: oceanic divergent boundaries
READ: Chapter 6
16-20 November: continental divergent boundaries
READ: Chapter 7
23 November: oceanic transform boundaries
READ: Chapters 4.2 and 8
30 November-4 December: continental transform boundaries
7 December: review session
9 December: EXAM 2-individual
11 December: EXAM 2-group exercise

Grading and Requirements
Problem sets: Problem sets will be assigned each week, but for the most part, we will work on them together during Friday class meetings. Participation in these group efforts will be 33% of the problem set grade, the rest will be your final grade on turned-in work. The total problem set grade will constitute 25% of your final grade.

Classroom exams: Two exams will be administered during the semester. The first will test you on physical processes underlying tectonics; the second will test you on the characteristics of standard plate boundaries. Exams will always consist of short answer essay questions, sometimes with a mathematical component. I will always provide mathematical formulae with the exams. The mean of the classroom exams will constitute 25% of your grade.

Field trip and report: We will go on a two-day field trip. We will set the dates and location for the field trip based on student schedules and your particular interests, but it will be in September or early October. You are responsible for a field report after the field trip, which will contain data collected by you in the field, along with analysis of those data, interpretation of their meaning, and other supplemental information from the course material. Graduate students enrolled in the course are expected to include primary research in support of their interpretation in addition to the basic report requirements. This report will constitute 25% of your grade.

Final exam: The final exam will be administered at the standard final time. It will include short questions including all of the class content, with and emphasis on practical problems and case studies. The final will constitute 25% of your grade.

Graduate vs. undergraduate students
Because this is an UG class, the members of the class have different academic backgrounds and levels of prior training. Graduate and undergraduate work will be graded and scaled separately. I expect more thorough and advanced work from graduate students, although students of any level may work together on collaborative assignments. All students must practice academic honesty. Academic misconduct is subject to an academic penalty by the course instructor and/or a disciplinary sanction by the University. All students need to be familiar with the Student Conduct Code. The Code is available for review online at http://www.umt.edu/SA/VPSA/index.cfm/page/1321.