Document Type


Publication Title

Atmospheric Chemistry and Physics

Publication Date







Biochemistry | Chemistry | Life Sciences | Physical Sciences and Mathematics


Biomass burning (BB) is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 hectare prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured physical and chemical changes that occurred in the isolated down-wind plume in the first similar to 4 h after emission. The measurements were carried out onboard a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR), aerosol mass spectrometer (AMS), single particle soot photometer (SP2), nephelometer, LiCor CO2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO2; CO; NOx; NH3; non-methane organic compounds; organic aerosol (OA); inorganic aerosol (nitrate, ammonium, sulfate, and chloride); aerosol light scattering; refractory black carbon (rBC); and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O-3 to excess CO in the plume (Delta O-3/Delta CO) increased from -5.13 (+/- 1.13) x 10(-3) to 10.2 (+/- 2.16) x 10(-2) in similar to 4.5 h following smoke emission. Excess acetic and formic acid (normalized to excess CO) increased by factors of 1.73 +/- 0.43 and 7.34 +/- 3.03 (respectively) over the same time since emission. Based on the rapid decay of C2H4 we infer an in-plume average OH concentration of 5.27 (+/- 0.97) x 10(6) molec cm(-3), consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased over the course of 4 h. The observed ammonium increase was a factor of 3.90 +/- 2.93 in about 4 h, but accounted for just similar to 36% of the gaseous ammonia lost on a molar basis. Some of the gas phase NH3 loss may have been due to condensation on, or formation of, particles below the AMS detection range. NOx was converted to PAN and particle nitrate with PAN production being about two times greater than production of observable nitrate in the first similar to 4 h following emission. The excess aerosol light scattering in the plume (normalized to excess CO2) increased by a factor of 2.50 +/- 0.74 over 4 h. The increase in light scattering was similar to that observed in an earlier study of a biomass burning plume in Mexico where significant secondary formation of OA closely tracked the increase in scattering. In the California plume, however, Delta OA/Delta CO2 decreased sharply for the first hour and then increased slowly with a net decrease of similar to 20% over 4 h. The fraction of thickly coated rBC particles increased up to similar to 85% over the 4 h aging period. Decreasing OA accompanied by increased scattering/particle coating in initial aging may be due to a combination of particle coagulation and evaporation processes. Recondensation of species initially evaporated from the particles may have contributed to the subsequent slow rise in OA. We compare our results to observations from other plume aging studies and suggest that differences in environmental factors such as smoke concentration, oxidant concentration, actinic flux, and RH contribute significantly to the variation in plume evolution observations.



Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.