Document Type

Article

Publication Title

Biogeosciences

Publisher

European Geosciences Union

Publication Date

2011

Abstract

Conventionally, measurements of carbon isotopes in atmospheric CO213CO2) have been used to partition fluxes between terrestrial and ocean carbon pools. However, novel analytical approaches combined with an increase in the spatial extent and frequency of δ13CO2 measurements allow us to conduct a global analysis of δ13CO2 variability to infer the isotopic composition of source CO2 to the atmosphere (δs). This global analysis yields coherent seasonal patterns of isotopic enrichment. Our results indicate that seasonal values of δs are more highly correlated with vapor pressure deficit (r = 0.404) than relative humidity (r = 0.149). We then evaluate two widely used stomatal conductance models and determine that the Leuning Model, which is primarily driven by vapor pressure deficit is more effective globally at predicting δs (RMSE = 1.6‰) than the Ball-Woodrow-Berry model, which is driven by relative humidity (RMSE = 2.7‰). Thus stomatal conductance on a global scale may be more sensitive to changes in vapor pressure deficit than relative humidity. This approach highlights a new application of using δ13CO2 measurements to validate global models.

DOI

10.5194/bg-8-3093-2011

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Share

COinS