Document Type


Publication Title

Microbial Pathogenesis

Publication Date







Biology | Life Sciences


Bartonella bacilliformis is the causative agent of the biphasic human disease, Oroya fever. During the primary disease phase, up to 100% of the circulating erythrocytes can be parasitized and 80% lysed. During the secondary phase of this disease, bacterial invasion shifts to endothelial cells lining the vasculature. B. bacilliformis is transferred between human hosts by the sandfly, Lutzomyia verrucarum. To investigate the regulation of ialB by environmental cues signaling vector-to-host transmission; nuclease protection assays were performed to compare the amount of ialB mRNA in bacteria subjected to temperature shift, pH change, oxidative stress, or hemin limitation. The amount of ialB mRNA increased by 223-310% in acid-treated samples and decreased by 28-39% in base-treated samples as compared to bacteria kept at pH 7.2. B. bacilliformis samples showed a 56-63% and 74-80% decrease in ialB mRNA when shifted to 37 degrees C from growth temperatures of 20 and 30 degrees C, respectively. Oxidative stress (1 mM H(2)O(2)) and hemin limitation had no significant effect on mRNA levels. Determination of IalB protein amounts using SDS-PAGE and immunoblotting showed the greatest amounts of IalB under acidic conditions or at 20 degrees C. The least amount of IalB was synthesized under basic conditions or at 37 degrees C. The viability of wild-type B. bacilliformis under the various experimental culture conditions was determined and found not to affect ialB mRNA amounts in these experiments. Finally, we compared the survival of wild-type and ialB mutant B. bacilliformis and found no difference in the viability of these two strains, demonstrating that IalB does not aid bacterial survival under these conditions.



© 2003 Elsevier Science Ltd. All rights reserved.

Included in

Biology Commons