"Use of Gene Probes to Aid in Recovery and Identification of Functional" by J. O. Ka, William E. Holben et al.
 

Document Type

Article

Publication Title

Applied and Environmental Microbiology

Publication Date

4-1994

Volume

60

Issue

4

Disciplines

Biology | Life Sciences

Abstract

The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was applied to soils in microcosms, and degradation was monitored after each of five repeated additions. Total DNAs were isolated from soil bacterial communities after each 2,4-D treatment. The DNA samples were analyzed on slot blots and Southern blots by using a tfdA gene probe subcloned from plasmid pJP4 and a Spa probe derived from a different 2,4-D-degrading isolate, a Sphingomonas paucimobilis strain. 2,4-D applied to soil was quickly degraded by indigenous microbial populations. As determined by slot blot analyses of DNA from a Michigan soil, the increase in hybridization signal in response to 2,4-D treatments was greater with the Spa probe than with the tfdA probe. In contrast, the DNA from a Saskatchewan soil exhibited an increase in hybridization signal with the tfdA probe. This indicated that a population with 2,4-D-degradative gene sequences different from the tfdA gene sequence was dominant in the Michigan site, but not in the Saskatchewan site. A Southern blot analysis of DNA from Michigan soil showed that the dominant 2,4-D-degrading population was S. paucimobilis 1443. A less dominant 2,4-D-degrading population was detected with the tfdA probe; further analysis revealed that this population was a Pseudomonas pickettii 712. These gene probe analyses revealed that an important population carrying out 2,4-D degradation was not detected when the canonical tfdA gene probe was used. After a series of new strains were isolated, we identified a probe to detect and identify the dominant members of this new group.

DOI

0099-2240/94

Included in

Biology Commons

Share

COinS