Document Type
Article
Publication Title
Journal of Geophysical Research
Publisher
American Geophysical Union
Publication Date
2004
Volume
109
Disciplines
Ecology and Evolutionary Biology
Abstract
We examined the response of terrestrial carbon fluxes to climate variability induced by the El Niño–Southern Oscillation (ENSO). We estimated global net primary production (NPP) from 1982 to 1999 using a light use efficiency model driven by satellite-derived canopy parameters from the Advanced Very High Resolution Radiometer and climate data from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis project. We estimated a summed heterotrophic respiration and fire carbon flux as the residual between NPP and the terrestrial net carbon flux inferred from an atmospheric inversion model, excluding the impacts of land use change. We propose that for global applications this approach may be more robust than traditional, biophysically based approaches of simulating heterotrophic respiration. NPP interannual variability was significantly related to ENSO, particularly at lower latitudes (22.5°N–22.5°S) but was weakly related to global temperature. Global heterotrophic respiration and fire carbon fluxes were strongly correlated with global temperature (7.9 pgC/°C). Our results confirm the dependence of global heterotrophic respiration and fire carbon fluxes on interannual temperature variability and strongly suggest that ENSO-mediated NPP variability influences the atmospheric CO2 growth rate.
Keywords
carbon cycling; ENSO; net primary production
DOI
10.1029/2004JD004959
Recommended Citation
Hashimoto, Hirofumi; Nemani, Ramakrishna R.; White, Michael A.; Jolly, William M.; Piper, Steve C.; Keeling, Charles D.; Myneni, Ranga B.; and Running, Steven W., "El Niño-Southern Oscillation-Induced Variability in Terrestrial Carbon Cycling" (2004). Ecosystem and Conservation Sciences Faculty Publications. 23.
https://scholarworks.umt.edu/decs_pubs/23
Comments
Accepted for publication in Journal of Geophysical Research. Copyright 2004 American Geophysical Union. Further reproduction or electronic distribution is not permitted.