Document Type

Article

Publication Title

Journal of Geophysical Research

Publisher

American Geophysical Union

Publication Date

1-25-2012

Volume

117

Disciplines

Earth Sciences | Geology

Abstract

Greater understanding of variations in firn densification is needed to distinguish between dynamic and melt-driven elevation changes on the Greenland ice sheet. This is especially true in Greenland’s percolation zone, where firn density profiles are poorly documented because few ice cores are extracted in regions with surface melt.We used geoader to investigate firn density variations with depth along an about 70 km transect through a portion of the accumulation area in western Greenland that partially melts. We estimated electromagnetic wave velocity by inverting reflection travel times picked from common midpoint gathers. We followed a procedure designed to find the simplest velocity versus depth model that describes the data within estimated uncertainty. On the basis of the velocities, we estimated 13 depth-density profiles of the upper 80 m using a petrophysical model based on the complex refractive index method equation. At the highest elevation site, our density profile is consistent with nearby core data acquired in the same year. Our profiles at the six highest elevation sites match an empirically based densification model for dry firn, indicating relatively minor amounts of water infiltration and densification by melt and refreeze in this higher region of the percolation zone. At the four lowest elevation sites our profiles reach ice densities at substantially shallower depths, implying considerable meltwater infiltration and ice layer development in this lower region of the percolation zone. The separation between these two regions is 8 km and spans 60 m of elevation, which suggests that the balance between dry-firn and melt-induced densification processes is sensitive to minor changes in melt.

DOI

10.1029/2011JF002089

Comments

An edited version of this paper was published by AGU. Copyright (2012) American Geophysical Union.

Rights

© 2012. American Geophysical Union.

Included in

Geology Commons

Share

COinS