Linear Inequalities for Flag f-vectors of Polytopes

Document Type

Presentation Abstract

Presentation Date

11-3-2005

Abstract

The f-vector enumerates the number of faces of a convex polytope according to dimension. The flag f-vector is a refinement of the f-vector since it enumerates face incidences of the polytope. To classify the set of flag f-vectors of polytopes is an open problem in discrete geometry. This was settled for 3-dimensional polytopes by Steinitz a century ago. However, already in dimension 4 the problem is open.

We will discuss the known linear inequalities for the flag f-vector of polytopes. These inequalities include the non-negativity of the toric g-vector, that the simplex minimizes the cd-index, and the Kalai convolution of inequalities.

We will introduce a method of lifting inequalities from lower dimensional polytopes to higher dimensions. As a result we obtain two new inequalities for 6-dimensional polytopes.

The talk will be accessible to a general audience.

Additional Details

Thursday, 3 November 2005
4:10 p.m. in Jour 304

This document is currently not available here.

Share

COinS