Localization results for indefinite eigenvalue problems

Document Type

Presentation Abstract

Presentation Date

2-16-2018

Abstract

Sylvester's law of inertia states that the number of positive, zero or negative eigenvalues of a matrix is invariant under congruence, and the same is true for pencils when at least one matrix is definite (and both are allowed to undergo independent congruences). Nothing was known thus far for indefinite pencils, and almost nothing for nonlinear problems. I will present new results of ours in this area, including inertia-based lower and upper bounds for the number of eigenvalues in a real interval. This talk is based on joint work with Yuji Nakatsukasa (University of Oxford).

Additional Details

Friday, February 16, 2018 at 3:00 p.m. in Math 103
Refreshments at 4:00 p.m. in Math Lounge 109

This document is currently not available here.

Share

COinS