Document Type


Publication Title

Journal of Hydrometeorology

Publication Date




First Page


Last Page



A new monthly global drought severity index (DSI) dataset developed from satellite-observed time-variable terrestrial water storage changes from the Gravity Recovery and Climate Experiment (GRACE) is presented. The GRACE-DSI record spans from 2002 to 2014 and will be extended with the ongoing GRACE and scheduled GRACE Follow-On missions. The GRACE-DSI captures major global drought events during the past decade and shows overall favorable spatiotemporal agreement with other commonly used drought metrics, including the Palmer drought severity index (PDSI) and the standardized precipitation evapotranspiration index (SPEI). The assets of the GRACE-DSI are 1) that it is based solely on satellite gravimetric observations and thus provides globally consistent drought monitoring, particularly where sparse ground observations (especially precipitation) constrain the use of traditional model-based monitoring methods; 2) that it has a large footprint (~350 km), so it is suitable for assessing regional- and global-scale drought; and 3) that it is sensitive to the overall terrestrial water storage component of the hydrologic cycle and therefore complements existing drought monitoring datasets by providing information about groundwater storage changes, which affect soil moisture recharge and drought recovery. In Australia, it is demonstrated that combining GRACE-DSI with other satellite environmental datasets improves the characterization of the 2000s “Millennium Drought” at shallow surface and subsurface soil layers. Contrasting vegetation greenness response to surface and underground water supply changes between western and eastern Australia is found, which might indicate that these regions have different relative plant rooting depths.


Drought; Hydrometeorology; Remote sensing



© 2017 American Meteorological Society

10.1175_JHM-D-16-0182.s1.docx (1837 kB)
Supplemental Content