Oral Presentations - Session 2B: UC 327
The role of Pinus lambertiana cones as a surface fuel in Sierra Nevada mixed-conifer forest
Presentation Type
Presentation
Faculty Mentor’s Full Name
Andrew Larson
Faculty Mentor’s Department
Forest Management
Abstract / Artist's Statement
The developmental stage at which sugar pine (Pinus lambertiana) cones become surface fuels may influence behavior of surface fires in Sierra Nevada mixed-conifer forests. This study investigates how sugar pine cones of different sizes and conditions may differ in terms of mean biomass, burning characteristics, and relative contribution to surface fuel loads. A six-category classification was developed to describe cones of different lengths and developmental stages, or condition classes. Field sampling was conducted at the Yosemite Forest Dynamics Plot (YFDP), a 25.6 hectare mapped study area in Yosemite National Park. We randomly placed 90, 9 m2 sub-plots within the YFDP and counted the number of cones per condition class in each sub-plot. Cones were returned to the laboratory, where the mean biomass and burning characteristics by condition class were determined. Sugar pine cones represent 601 kg per hectare of surface fuels in YFDP. Mean cone biomass, flame length, burn time, and mass loss differed significantly between cone condition classes (one-way ANOVA, P25 cm long) accounted for 56% of biomass per hectare. Burning characteristics were most extreme for recently-deposited mature cones: flame lengths for mature cones had a mean of 110 cm, while flame lengths for juvenile cones had a mean of 18 cm. Forest managers can use the cone classification presented here to improve accuracy of surface fuel estimates.
Category
Life Sciences
The role of Pinus lambertiana cones as a surface fuel in Sierra Nevada mixed-conifer forest
UC 327
The developmental stage at which sugar pine (Pinus lambertiana) cones become surface fuels may influence behavior of surface fires in Sierra Nevada mixed-conifer forests. This study investigates how sugar pine cones of different sizes and conditions may differ in terms of mean biomass, burning characteristics, and relative contribution to surface fuel loads. A six-category classification was developed to describe cones of different lengths and developmental stages, or condition classes. Field sampling was conducted at the Yosemite Forest Dynamics Plot (YFDP), a 25.6 hectare mapped study area in Yosemite National Park. We randomly placed 90, 9 m2 sub-plots within the YFDP and counted the number of cones per condition class in each sub-plot. Cones were returned to the laboratory, where the mean biomass and burning characteristics by condition class were determined. Sugar pine cones represent 601 kg per hectare of surface fuels in YFDP. Mean cone biomass, flame length, burn time, and mass loss differed significantly between cone condition classes (one-way ANOVA, P25 cm long) accounted for 56% of biomass per hectare. Burning characteristics were most extreme for recently-deposited mature cones: flame lengths for mature cones had a mean of 110 cm, while flame lengths for juvenile cones had a mean of 18 cm. Forest managers can use the cone classification presented here to improve accuracy of surface fuel estimates.