Project Type
Presentation
Faculty Mentor’s Full Name
Kylla Benes
Faculty Mentor’s Department
Davidson Honors College
Abstract / Artist's Statement
The interaction of natural climate cycles, anthropogenic climate change, and weather events affect organisms on centennial through hourly timescales. Intertidal organisms are affected by both marine and terrestrial climate variables, adding to the complexity of identifying drivers of changing biodiversity in these ecosystems. The Gulf of Maine is one of the fastest warming areas of ocean in the world, and its rocky shores are home to diverse, productive intertidal communities. These intertidal communities include several foundation species, which have an outsized impact on intertidal and marine organisms at all tropic levels. Using a 40-year, student-collected record of intertidal biodiversity data from Appledore Island, Maine I have found that the relative abundance of several foundation species has increased, decreased, and remained steady over time. Associated climate records, including sea surface temperature, air temperature, precipitation, and wave height will be used to identify the environmental factors driving changes in intertidal organism abundance and community composition. This research will provide a more nuanced understanding of how climate change is restructuring intertidal communities.
Category
Life Sciences
- Usage
- Abstract Views: 54
- Downloads: 35
Shifting Baselines: Documenting Long-Term Impacts of Climate Change on Intertidal Foundation Species in the Gulf of Maine
The interaction of natural climate cycles, anthropogenic climate change, and weather events affect organisms on centennial through hourly timescales. Intertidal organisms are affected by both marine and terrestrial climate variables, adding to the complexity of identifying drivers of changing biodiversity in these ecosystems. The Gulf of Maine is one of the fastest warming areas of ocean in the world, and its rocky shores are home to diverse, productive intertidal communities. These intertidal communities include several foundation species, which have an outsized impact on intertidal and marine organisms at all tropic levels. Using a 40-year, student-collected record of intertidal biodiversity data from Appledore Island, Maine I have found that the relative abundance of several foundation species has increased, decreased, and remained steady over time. Associated climate records, including sea surface temperature, air temperature, precipitation, and wave height will be used to identify the environmental factors driving changes in intertidal organism abundance and community composition. This research will provide a more nuanced understanding of how climate change is restructuring intertidal communities.