Document Type
Article
Publication Title
Journal of Chemical Physics
Publication Date
4-1-1980
Volume
72
Issue
7
Disciplines
Biochemistry | Chemistry | Life Sciences | Physical Sciences and Mathematics | Physics
Abstract
The depolarized Rayleigh spectra of aqueous solutions of pyridine have been studied using a high‐finesse Fabry–Perot interferometer as a function of temperature and concentration. The Rayleigh relaxation times are found to have a complex concentration and viscosity dependence. The classical Stokes–Einstein–Debye equation for molecular reorientation breaks down in this system. The Rayleigh relaxation time of pyridine molecules is not determined by the macroscopic shear viscosity of the solution. The specific interaction due to the formation of hydrogen bonds between pyridine and water molecules plays a very important role in affecting the relaxation time. At a fixed temperature the plot of πray/η versus pyridine concentration shows two maxima at low and high pyridine concentrations. The low concentration maximum is due to the incorporation of pyridine molecules in the water network structure and the high concentration maximum is associated with the formation of individual pyridine–water complexes. The activation energy for the reorientation of pyridine molecules depends on the pyridine concentration. At low pyridine concentration the activation energy corresponds well to the N⋅⋅⋅H–O hydrogen bondingenergy. Above 70% volume the activation energy decreases with increasing pyridine concentration, and above this concentration range the reorientational relaxation time becomes less structure controlled.
Keywords
Activation energies, relaxation times, hydrogen bonding, bond formation, hydrogen energy, interferometers, light scattering, shear rate dependent viscosity, viscosity, visible spectra
DOI
10.1063/1.439654
Rights
© 1980 American Institute of Physics
Recommended Citation
Wang, C. H.; Whittenburg, Scott L.; Lund, P. A.; and Christensen, D. H., "Studies of the Reorientational Relaxation of Pyridine in Water by Depolarized Rayleigh Light Scattering" (1980). Chemistry and Biochemistry Faculty Publications. 72.
https://scholarworks.umt.edu/chem_pubs/72
Comments
Link to Publisher's Version