Document Type
Article
Publication Title
Applications of Mathematics
Publisher
Springer Berlin Heidelberg
Publication Date
10-2014
Volume
59
Issue
5
Disciplines
Computer Sciences
Abstract
Evolutionary Algorithms, also known as Genetic Algorithms in a former terminology, are probabilistic algorithms for optimization, which mimic operators from natural selection and genetics. The paper analyses the convergence of the heuristic associated to a special type of Genetic Algorithm, namely the Steady State Genetic Algorithm (SSGA), considered as a discrete-time dynamical system non-generational model. Inspired by the Markov chain results in finite Evolutionary Algorithms, conditions are given under which the SSGA heuristic converges to the population consisting of copies of the best chromosome.
Keywords
genetic algorithm, Markov chain, random heuristic search MSC 2010: 60J10, 68W20, 90C59
DOI
10.1007/s10492-014-0069-z
Rights
© Springer International Publishing AG, Part of Springer Science+Business Media
Recommended Citation
Agapie, Alexandru and Wright, Alden H., "Theoretical Analysis of Steady State Genetic Algorithms" (2014). Computer Science Faculty Publications. 28.
https://scholarworks.umt.edu/cs_pubs/28
Comments
The original publication is available at www.dml.cz
Link to publisher's version: http://link.springer.com/article/10.1007%2Fs10492-014-0069-z