Document Type
Article
Publication Title
Journal of Geophysical Research: Earth Surfaces
Publisher
American Geophysical Union
Publication Date
9-9-2015
Volume
120
Disciplines
Computer Sciences | Glaciology
Abstract
We use a new discretization technique to solve the higher-order thermomechanically coupled equations of glacier evolution. We find that under radially symmetric continuum equations, small perturbations in symmetry due to the discretization are sufficient to produce the initiation of non-symmetric thermomechanical instabilities which we interpret as ice streams, in good agreement with previous studies which have indicated a similar instability. We find that the inclusion of membrane stresses regularizes the size of predicted streams, eliminating the ill-posedness evident in previous investigations of ice stream generation through thermomechanical instability. Ice streams exhibit strongly irregular periodicity which is influenced by neighboring ice streams and the synoptic state of the ice stream. Ice streams are not always the same size but instead appear to follow a temperature-dependent distribution of widths that is robust to grid refinement. the morphology of the predicted ice streams corresponds reasonably well to extant ice streams in physically similar environments.
Keywords
ice sheet model; ice streams; thermofrictional instability; membrane stress; periodic time scales
DOI
10.1002/2015JF003499
Rights
© 2015. American Geophysical Union.
Recommended Citation
Brinkerhoff, D. J., and J. V. Johnson (2015), Dynamics of thermally induced ice streams simulated with a higher-order flow model, J. Geophys. Res. Earth Surf., 120, 1743-1770, doi: 10.1002/2015JF003499.
Comments
An edited version of this paper was published by AGU. Copyright 2015 American Geophysical Union.