Year of Award

2013

Document Type

Dissertation

Degree Type

Doctor of Philosophy (PhD)

Degree Name

Chemistry

Department or School/College

Department of Chemistry and Biochemistry

Committee Chair

Christopher Palmer

Commitee Members

Michael DeGrandpre, Klara Briknarova, Burke Hales, Garon Smith

Abstract

Submersible Autonomous Moored Instruments for pH and pCO2 (SAMI-pH and SAMI-CO2) were deployed in a coastal upwelling zone on the Oregon Coast to collect unique multi-season, multi-year datasets of carbonate system dynamics. This is the first long-term deployment of the SAMI-pH paired with a SAMI-CO2. The objectives of this study included (1) improving the accuracy of the SAMI-pH (2) assessing the performance of using paired SAMI-pH and SAMI-CO2 measurements to calculate other carbonate system parameters and (3) analyzing the data to better understand the seasonal, inter-annual, and upwelling variation in the coastal marine carbonate system. SAMI-pH accuracy was improved by better characterization of the pH indicator used in these spectrophotometric measurements. Using paired SAMI-pH and SAMI-CO2 measurements from this study to calculate calcium carbonate saturation states (Ω) occasionally induced significant offsets in the results and so should be used with caution. However, a salinity-derived alkalinity for the region was found to calculate more accurate Ω when paired with either SAMI-pH or SAMI-CO2 measurements. This unique, long-term, high temporal resolution dataset (collected over a period of five years) was used to characterize the carbonate system dynamics in this coastal upwelling zone. Large, fast changes in Ω (>3.0) occurred over a period of a few days and aragonite saturation state (ΩAr) decreased to undersaturation (ΩAr

Share

COinS
 

© Copyright 2013 Katherine Elizabeth Harris