Year of Award
2020
Document Type
Thesis
Degree Type
Master of Science (MS)
Degree Name
Computer Science
Department or School/College
Computer Science
Committee Chair
Douglas Brinkerhoff
Commitee Members
Douglas Brinkerhoff, Jesse Johnson, Marco Maneta
Keywords
machine learning, neural networks, mapping, irrigation
Subject Categories
Artificial Intelligence and Robotics | Environmental Monitoring | Natural Resources Management and Policy | Water Resource Management
Abstract
Accurate maps of irrigation are essential for understanding and managing water resources in light of a warming climate. We present a new method for mapping irrigation and apply it to the state of Montana over the years 2000-2019. The method is based on an ensemble of convolutional neural networks that only rely on raw Landsat surface reflectance data. The ensemble of networks method learns to mask clouds and ignore Landsat 7 scan-line failures without supervision, reducing the need for preprocessing data or feature engineering. Unlike other approaches to mapping irrigation, the method doesn't use other mapping products like the Cropland Data Layer or the National Land Cover Dataset, removing the biases inherent in using those products. We evaluate our method and compare it to existing maps of irrigation on novel spatially explicit ground truth data, finding that our method outperforms other methods of mapping irrigation in Montana in terms of overall accuracy and precision. We find that our method agrees better statewide with the USDA National Agricultural Statistics Survey estimates of irrigated area compared to other methods, and has far fewer errors of commission in rainfed agriculture areas. In addition, our method produces uncertainties for predictions of irrigated land, and we find that the neural networks have large uncertainty in some misclassified areas. The methodology has the potential to be applied across the entire United States and for the complete Landsat record.
Recommended Citation
Colligan, Thomas Henry IV, "A Deep Learning Approach to Mapping Irrigation: U-Net IrrMapper" (2020). Graduate Student Theses, Dissertations, & Professional Papers. 11674.
https://scholarworks.umt.edu/etd/11674
Included in
Artificial Intelligence and Robotics Commons, Environmental Monitoring Commons, Natural Resources Management and Policy Commons, Water Resource Management Commons
© Copyright 2020 Thomas Henry Colligan IV