Year of Award
2009
Document Type
Thesis
Degree Type
Master of Science (MS)
Degree Name
Geography (Cartography and GIS Option)
Department or School/College
Department of Geography
Committee Chair
David Shively
Commitee Members
Anna Klene, Tyron Venn
Keywords
Fire Management and Planning, Wildland Fire, Wildland-Urban Interface (WUI)
Abstract
Research indicates firefighting costs in the wildland-urban interface (WUI) are highly correlated with the number of homes threatened by wildfire. Therefore, knowing the location of structures is paramount for planners and fire managers attempting to reduce the threats posed to structures by wildfire, and for the attainment of land management goals and objectives for reducing hazardous fuels surrounding them. Yet, no national-level structure location dataset exists. Previous attempts, such as the SILVIS Lab’s product, to predict structure location and the extent of the WUI have relied on Census block-level data. While urban Census blocks are generally small in area, those corresponding to sparsely settled areas may contain many square miles of territory. Rural Census blocks can contain small clusters of homes in one area, but any large uninhabited regions in the remaining area can result in an average structure density that is lower than the federal WUI criteria. Additionally, the designation of an entire large Census block as WUI, when only a small portion of the block contains houses, simultaneously causes both an underestimation in the number of Census blocks that contain areas meeting the density criterion and overestimates the extent of the WUI. LandScan USA, created by researchers at the Oak Ridge National Laboratory, estimates the population distribution for the United States using Census blocklevel housing data and additional inputs including transportation infrastructure, land cover, elevation, and cultural criterion, such as recreational features, retail establishments, employment, and educational locations. In order to test the accuracy of the LandScan USA dataset for predicting structure locations in the WUI, this study measures the spatial coincidence between this dataset and county-level cadastral data in northwest Montana and compares those results to the SILVIS data. Additionally, each dataset was buffered 1½-miles and compared for spatial coincidence to measure the potential of the LandScan USA data to predict the location of the WUI. The findings reveal that the LandScan USA data do not adequately predict the location of structures for use in wildfire management and planning. However, this research does indicate that further research into LandScan USA’s ability to demarcate the WUI is justified.
Recommended Citation
Kaiden, Jeffrey Daniel, "An Assessment of the Viability of LandScan Data to Estimate Structure Location in Wildland Fire Management and Planning" (2009). Graduate Student Theses, Dissertations, & Professional Papers. 124.
https://scholarworks.umt.edu/etd/124
© Copyright 2009 Jeffrey Daniel Kaiden