Document Type

Article

Publication Title

Ecological Applications

Publication Date

4-2009

Volume

19

Issue

3

Disciplines

Forest Management | Forest Sciences | Life Sciences

Abstract

Human-caused disruptions to seed-dispersal mutualisms increase the extinction risk for both plant and animal species. Large-seeded plants can be particularly vulnerable due to highly specialized dispersal systems and no compensatory regeneration mechanisms. Whitebark pine ( Pinus albicaulis), a keystone subalpine species, obligately depends upon the Clark's Nutcracker (Nucifraga columbiana) for dispersal of its large, wingless seeds. Clark's Nutcracker, a facultative mutualist with whitebark pine, is sensitive to rates of energy gain, and emigrates from subalpine forests during periods of cone shortages. The invasive fungal pathogen Cronartium ribicola, which causes white pine blister rust, reduces whitebark pine cone production by killing cone-bearing branches and trees. Mortality from blister rust reaches 90% or higher in some whitebark pine forests in the Northern Rocky Mountains, USA, and the rust now occurs nearly rangewide in whitebark pine. Our objectives were to identify the minimum level of cone production necessary to elicit seed dispersal by nutcrackers and to determine how cone production is influenced by forest structure and health. We quantified forest conditions and ecological interactions between nutcrackers and whitebark pine in three Rocky Mountain ecosystems that differ in levels of rust infection and mortality. Both the frequency of nutcracker occurrence and probability of seed dispersal were strongly related to annual whitebark pine cone production, which had a positive linear association with live whitebark pine basal area, and negative linear association with whitebark pine tree mortality and rust infection. From our data, we estimated that a threshold level of similar to 1000 cones/ha is needed for a high likelihood of seed dispersal by nutcrackers ( probability >= 0.7), and that this level of cone production can be met by forests with live whitebark pine basal area >5.0 m(2)/ha. The risk of mutualism disruption is greatest in northernmost Montana ( USA), where three-year mean cone production and live basal area fell below predicted threshold levels. There, nutcracker occurrence, seed dispersal, and whitebark pine regeneration were the lowest of the three ecosystems. Managers can use these threshold values to differentiate between restoration sites requiring planting of rust-resistant seedlings and sites where nutcracker seed dispersal can be expected.

DOI

10.1890/08-0151.1

Rights

Copyright 2009 by the Ecological Society of America. Shawn T. McKinney, Carl E. Fiedler, and Diana F. Tomback 2009. Invasive pathogen threatens bird–pine mutualism: implications for sustaining a high-elevation ecosystem. Ecological Applications 19:597–607. http://dx.doi.org/10.1890/08-0151.1.

Share

COinS