Title
The effects of spatial aggregation of complex topography on hydro-ecological process simulations within a rugged forest landscape: Development and application of a satellite-based topoclimatic model.
Document Type
Article
Publication Title
Canadian Journal of Forestry
Publication Date
2004
Volume
34
Issue
3
First Page
519
Last Page
530
Abstract
We evaluated the effects of topographic complexity on landscape carbon and hydrologic process simulations within a rugged mixed hardwood forest by developing and applying a satellite-based hydroecological model at multiple spatial scales. The effects of topographic variability were evaluated by aggregating raster-based digital elevation model and satellite-derived leaf area index inputs across eight different spatial resolutions from 30 m (62 208 pixels) to 2160 m (12 pixels). Our modeling analysis showed that the effect of topography was the strongest on solar radiation and temperature, intermediate on soil water and evapotranspiration, and ambiguous on soil respiration. Spatial aggregation of model inputs smoothed heterogeneous spatial patterns of modeled output variables relative to fine-scale results. Model outputs varied nonlinearly with different levels of spatial aggregation, while spatial variability of model inputs and outputs were dampened at increasingly coarse aggregation levels. Biases in spatially aggregated model predictions were generally less than ±10%, except for solar radiation, which showed biases of up to +50% at coarser spatial scales. The large positive bias in the solar radiation implies that overestimation of biophysical variables that are sensitive to solar radiation (e.g., photosynthesis and net primary production) may be considerable in rugged forested landscapes unless subgrid scale effects are accounted for.
DOI
http://dx.doi.org/10.1139/x03-213
Rights
© 2004 NRC Research Press
Recommended Citation
Kang, S., Lee D., and Kimball J. S. (2004). The effects of spatial aggregation of complex topography on hydro-ecological process simulations within a rugged forest landscape: Development and application of a satellite-based topoclimatic model. Canadian Journal of Forestry, 34(3): 519-530, doi: 10.1139/x03-213